

PASCAL 64
"The" Pascal Compiler

for the Commodore 64

c
A Data Becker Product

>AbacusiII Software
P.O. BOX 7211 GRAND RAPIDS, MICK 49510

7010

c

c

COPYRIGHT NOTICE

ABACUS Software makes this package available for use on a
single computer only. It is unlawful to copy any portion of
this softare package onto any medium for any purpose other
than backup. It is unlawful to give away or resell copies of
any part of this package. Any unauthorized distribution of

this product deprives the authors of their deserved
royalties. For use on multiple computers, please contact
ABACUS Software to make such arrangements.

WARRANTY

ABACUS Software makes no warranties, expressed or implied as

to the fitness of this software product for any particular
purpose. In no event will ABACUS Software be liable for

consequential damages. ABACUS Software will replace any copy

of the software which is unreadable if returned within 30
days of purchase. Thereafter, there will be a nominal charge
for replacement.

First Printing, September 1984

Printed in U.S.A. Translated by Greg Dykema
Copyright (C)1984 Data Becker, GmbH

/— Merowingerstr. 30

C 4000 Dusseldorf,W.Germany
^- Copyright(C)1984 Abacus Software, Inc.

P.O. Box 7211

Grand Rapids, MI 45910

ISBN # 0-916439-10-0

c

c

c

Preface

What is Pascal? Pascal is a Modern programming
language developed by a Swiss professor (Dr. Niklaus Wirth)
as a teaching language for structured programming. It
quickly became popular for both teaching and commercial
applications. Even among personal computers, Pascal has
become a dominating language, loosening BASIC'S hold as the
"standard" microcomputer langage. In many schools, Pascal is
the standard for information processing and structured
programming courses. Now Pascal is available for the most
popular of home computers - the Commodore 64.

What has lead to the tremendous popularity of this
language?

One of the primary reasons is the efficient program
structures of Pascal. A new method a programming, structured
programming, is built into Pascal. Structured programs are
far easier to understand and modify than unstructured
programs. Pascal eliminates many programming errors simply

through its use of local and global variable definitions in
which a local variable name refers only to the program block
in which it is declared. A additonal advantage is Pascal's
complex data structures. In addition to the basic data types
REAL, INTEGER, BOOLEAN, and CHAR data types, data fields
(ARRAY), memory-optimized fields (PACKED ARRAY), character
strings (STRING), mathematical sets (SETS), data record
(RECORD), files (FILE), and pointers (POINTER) are all
supported. These data types can be combined as desired to
form more complex data structures. With the help of pointer,
one can construct linked list, stacks, binary trees, and

more. Pascal programs can be written with the built-in
Commodore BASIC editor; you need not load in anything else
or learn to use another editor.

Pascal 64 contains even more capabilites which make use
of the special features of the Commodore 64. Procedures are
included for working with high-resolution graphics and
sprites. In addition, Pascal 64 allows you to make complete
and efficient use of the relative data management
capabilities of your disk drive. Pascal 64 allows you to use
strings of any desired length. Programs created by Pascal 64
are 10-20 times faster than equivalent programs written in
BASIC, or even 30 times faster in some cases because Pascal
64 creates actual machine code. Machine language programs
may also be controlled with PBEK, POKE, SYS, and other
jpecial commands. Pascal 64 can be used in conjunction with
the ASSEMBLER/MONITOR-64 software package available from
ABACUS Software. Two programs can run concurrently—useful
for video games (sprite control) or for controlling inter
face devices, for example. The possibilities which Pascal 64
offers you are virtually limitless.

c

c

c

Table of contents

Chapter 1

1.1 Operation of the Pascal 64 compiler 1

Chapter 2

2.1 Organization of a Pascal program 4
2.2 Domain of variables 4
2.3 Defining a block 5

2.4 General syntax , 5

2.5 Comments g

Chapter 3

3.1 Variable types 7

3.2 Mathematic operations 8
3.3 Program header 10

3.4 Variable declarations 10

3.5 Constant declarations 11

3.6 Declaring user-defined data types 11
3.7 Arithmetic expressions 11

3.8 The Pascal assignment statement 12
3.9 Input and Output 13

3.10 Formatted numeric output 15

Chapter 4

4.1 Control structures 16

4.2 Loop control structures 16

4.2.1 The REPEAT statement 16

4.2.2 The WHILE statement 17
4.2.3 The FOR statement 17

4.3 Conditional statements 19
4.3.1 The IF statement 19

4.3.2 The CASE statement 19
4.4 The GOTO statement 20

4.5 Using control structures 21

Chapter 5

5.1 Procedures and functions 23

5.1.1 Procedure declaration 23

5.1.2 Calling a procedure 24

5.1.3 Function declaration 25
5.2 Recursion 26

5.3 Exiting a procedure 27

Chapter 6

c
6.1 Data structures 28

6.2 ARRAYS 29

6.3 RECORDS 30

6.4 Combining RECORDS and ARRAYs 31

6.5 WITH statement 32

6.6 Working with strings 33

6.6.1 Subranges 33

6.6.2 Length of strings 34

6.6.3 Additional string operations 35

6.7 String functions 36

6.8 Packed fields 37

Chapter 7

7.1 FILEs 39

7.2 Error channel and file status 40

7.3 Input/Output of data blocks 41

7.4 Relative files 41

7.5 Using relative files 43

Chapter 8

c
8.1 SETs 45

8.2 Representing sets 46

8.3 Set operations 47

8.4 Using sets 48

Chapter 9

9.1 Dynamic data structures (linked lists) 49

9.2 Using pointers 51

9.3 Additional list structures 53

9.4 Combining data structures 53

Chapter 10

c

10.1 Graphics statements 55

10.1.1 Initializing the graphics screen 55

10.1.2 Clearing the graphics screen 55

10.1.3 Setting a point - PLOT 56

10.1.4 Erasing a point - UNPLOT 56

10.1.5 The SPRITE statement 56

10.2 The POKE statement 57

10.3 Executing a machine language program 57

10.4 The high-speed mode - INTEGER 58

10.5 Simultaneous execution of two programs -

INTERRUPT 59

10.6 Run-time error messages 62

Chapter 11

11.1 Symbol files for ASSEMBLER/MONITOR 64 63

11.2 Jump to monitor 63

c.

c

Chapter 12

12.1 Drawing a line 65

12.2 Activating four-color graphics 65

12.3 Setting a point in multi-color node 66

Chapter 13

13.1 Introduction to structured programming 67

Chapter 14

14.1 A short overview of Pascal 64 ...69
14.1.1 Data types 69

14.1.2 Declarations 69

14.1.3 Procedures and functions 69
14.1.4 Structures 70

14.1.5 Input and Output statements 70
14.1.6 Other statements 71

14.1.7 Assigments 72

14.1.8 Arithmetic operations 72

14.1.9 Predeclared Functions 73

14.1.10 Accessing data structures 73

14.1.11 Predeclared names 74

14.1.12 Special characters for I/O 74

15 BIBLIOGRAPHY 75

c

c

c

c

Abacus Software PASCAL-64

Chapter 1

1.1 Operation of the Pascal 64 Compiler

-1- Write your Pascal program as you are used to doing for
BASIC programs. You aust use line numbers as you do for

BASIC programs. Correcting and inserting lines is done

exactly as in BASIC. This means that you do not have to

learn to use another editor, but the following except
ions must be noted:

In Pascal, it is possible that a number must be the
first item on a line. This happens with the CASE
statement, for example. The BASIC editor is unable to
distiguish this number from the the preceding line

number, however, and assumes that it is an extension of

it. In order to avoid this, a shifted space can be used

to separate this number from the line number. Whenever

this line is edited, the shifted space must be typed in

again because the LIST command prints a normal space. It

is better if you do not put a number and the beginning

of a line, but use a semicolon instead, followed by a
space. This lone semicolon has no effect on the program

and is read as a null statement. With the help of this

trick, it is also possible to place several spaces at

the beginning of a line, making the the structure of the
program clearer.

The two BASIC commands REN and DATA affect the

BASIC editor. Therefore they may not appear in any form

in the program, not even as part of a variable name.

-2- When you are finished writing the program, save it to

your work diskette with SAVENprogram name**, 8. Do not

under any circumstances use the Pascal 64 distribution
diskette or it may be destroyed.

-3- To compile the program, load the compiler from the
distribution diskette with

LOAD'PASCAL 64",8

and start the program with HUN. When the compiler has
finished loading, take the Pascal 64 disk out of the
drive and replace it with your work diskette. Should the
compiler fail to load properly, your disk drive may not

have been initialized properly, although this happens
only very rarely. Turn the computer off and then back on
and enter the following line:

OPEN 15,8,15,*I":CLOSE 15

After this, start again with the loader program. When
the compiler is correctly loaded, it will ask for the

name of the program you wish to compile, followed by the

nesting depth of the program. The nesting depth is the

- 1 -

c

c

Abacus Software PASCAL-64

number of loops or subroutines which may be nested. The

default value given by the compiler must be increased

only for very deeply nested programs. Otherwise, simply
press the RETURN key. Note: In BASIC, this value is
limited to 9 for loops and 23 for subroutines.

-4- Now the compiled machine language program will be writ
ten to the work diskette. In its second pass, the

compiler will display the line it is currently working
on in the top-most screen line.

-5- If the compiler should find an uncompilable line, it
responds with COMPILE ERROR IN XXXX and a short

description of the error. Some error messages may be
-somewhat misleading. For example, if a variable name is

misspelled, the compiler will respond with "Variable not
declared," since it has no way of knowing whether you

forgot to declare a variable or if you simply misspelled
it. To correct an error, reload your program with

LOAD"program name",8; re-edit the program; SAVE it to
disk, and continue with step 2 after correcting the
error.

-6- Once the program has been compiled successfully, the
compiler will display a number representing the end of
the program. Make note of this number, as we will need

it later. If you want to compile another Pascal program,

press the "Y" key. The compiler will automatically

restart itself (the distribution diskette is not

required). If you do not want to compile another
program, press any other key.

-7- Load the loader from the distribution diskette with
LOAD"LOADER",8 and start it with RUN 100. The program
will ask for the program end (see point 6) and the
program name and then loads the machine language program
from your work diskette.

-8- The loader responds with "READY." and your Pascal

program is completed. It can now be saved to diskette

with SAVE; loaded in again with LOAD, or executed with
RUN. When using the high-resolution graphics, the
compiler reserves 8K of memory for storing the graphics

screen. If you do not want to save this memory, enter

SYS 3707 before the SAVE command. To later start such a

program, use SYS 3748. The file created by the compiler

can be deleted with:

OPEN 15,8,15,"S:P/program name":CLOSE 15

-9- It is often necessary to insert an existing routine into
a Pascal program. The Pascal 64 command EXTERNAL is used
to do this.

- 2 -

c

c

c

Abacus Software PASCAL-64

The fornat is:

EXTERNAL "routine nane";

No other statements may be on this line. In order to

compile a program which contains such a line, you must

first use the linker. Load the linker with

LOAD"LINKER",8 and start it with RUN. Give it the name

of the program and the name of the program to be

created. The linker creates a program which, instead of

the EXTERNAL, contains the actual routine so referenced.

This routine must be on the same diskette. The line

numbers of the routine will be renumbered and the line

numbers of the main program will remain the same if

there is enough room for the routine. The line numbers

are irrelevant to Pascal.

If the routine accessed via EXTERNAL contains an

EXTERNAL reference itself, this will NOT be executed and

the linker will notify you. Such a routine must first be

run through linker before the main program in order to

process the nested EXTERNAL.

-10- Linker and loader are independent of the Pascal 64

distribution diskette. The compiler can be loaded from

the distribution disk only, but linker and loader may be

transferred to your work diskette.

-11- In order to get used to the way the compiler works, it

would be a good idea to first read the following chapter

and then link and compile the following program. The

external routine necessary for this program is found in

Chapter 12.

Main program:

10 CONST PI=3.14159265;

20 VAR X,Y,FX,FY,A,B,L,I,XL,YL,ST:REAL;
30 EXTERNAL "DRAW";

40 BEGIN A:= -6; B:= 1; ST:= 5; FX:= 12; FY:= 12;

50 ST:= PI/ST;

60 GRAPHIC 1; SCREENCLEAR;

70 L:= -3; WHILE L< = 3 DO BEGIN

80 I: = 0; WHILE K =2*PI DO BEGIN

90 X:= XL; Y: = YL;

100 XL:= (A+B)*COS(I)-L*B*COS((A+B)/B*I);

110 YL:= (A+B)*SIN(I)-L*B*SIN((A+B)/B*I);

120 IF IO0 THEN DRAW

(X*FX+160,Y*FY+100,XL*FX+160,YL*FY+100);
130 I:= I+ST; END;

140 I: = 1+0.5; END;

150 REPEAT UNTIL PEEK(197)<>64; END;

- 3 -

c

c

c

Abacus Software PASCAL-64

Chapter 2

2.1 Organization of a Pascal program

A Pascal program consists of four parts:

-1- Program header

The program header contains the name of the program. For

subroutines, the subroutine parameters are also located

here. In Pascal 64, the main program header may be

omitted.

-2- Variable declarations

Here all variables, constants, types, etc. are defined.

-3- Subroutine declarations

In this section, all of the procedures and functions

called from the main program or from other subroutines

are defined. The subroutine definition has the same

structure as the main program definition, that is, each

subroutine has its own variables and subroutines.

-4- Program block

The program itself is located in this part. The program

may make use of all of the previously declared global

variables (as opposed to variables defined within a

subroutine, called local variables) and subroutines. The

program must start with BEGIN and end with END

The program block of the main program is called at the

start of the program. This block then calls the

subroutines. After the END., control is returned to the

BASIC interpreter.

2.2 Domain of variables

Because a subroutine is organized the same way the main

program is, it can have its own variables and its own sub

routines. The variables of a subroutine cannot be used by

the main program or a higher-level (outer-nested) subrou

tine. The subroutine however can make use of the variables

of the main program or higher-level subroutine.

In general, we can say that a variable declared at the

top of a main program or subroutine becomes undefined or

invalid following the END; of that block.

- 4 -

c

c

c

Abacus Software PASCAL-64

If a variable in a subroutine has the same name as that

of another variable in a higher-level subroutine, the

higher-level global variable loses its accessability to that

variable for the duration of the subroutine in which the

conflict occurs and will regain it again once the local

variable loses its definition. The value of the global

variable is not affected. Therefore you need not worry about

choosing unique names for each of the variables in all of

your subroutines. Thus this shortcoming of BASIC is

addressed by the Pascal language.

2.3 Defining a block

The program-block portion of a main program or

subroutine is delimited by the statemenmts BEGIN and END;
(END. for a main program). A block consists of several
statements and/or structures (loops, etc.), each separated

from the other by a semicolon. Within the structures are one
or more blocks. A block consisting of only one statement

does not need a BEGIN and END;, as long as this construction
makes sense (it does not for program blocks, for instance).

2.4 General syntax

In Pascal, each reserved word (keyword) must be followed by

a space. If a keyword requires parameters, they follow this

space. A semicolon signals the end of a statement and serves

to separate one statement from the next. If a statement does

not require a parameter list, the semicolon may be placed

immediately following the keyword. No spaces may appear
within a list element of parameters, variables, or formulas.

List elements are separated from each other by commas, not

by spaces. Spaces may not be placed before a semicolon or

the semicolon is treated as a null statement and not as a
statement separater. The end of a line (carriage return) is

treated as a space for the purposes of syntax. Naturally,
where one space is allowed, more may be used if desired, in

order to show the structure of the program graphically.

Example:

READLN (VARIABLE1,VARIABLE2); WRITELN (VARIABLE1,VARIABLE2);
WRITELN;

The most common error made by beginners is the improper use

of spaces, but the rules can be learned quite quickly

because they follow a logical pattern. Pascal 64 is more

strict in its syntax than is standard Pascal but is more

Abacus Software PASCAL-64

tolerant in the use of Pascal capabilities.

2.5 Comments

To place a comment in a Pascal program, set it off from

the rest of the program text as follows:

(* comment *)

The compiler will ignore any and all text between the "(*"

and the ")*".

The information presented in this chapter will be explained

in greater detail in the following chapters.

c

c

- 6 -

c

c

c

Abacus Software PASCAL-64

Chapter 3

3.1 Variable types

In Pascal, four basic data types are available:

-1- Whole numbers are denoted by INTEGER and may be

values ranging from -32768 to 32767. A decimal

point and any digits after will be ignored. INTEGER

variables use only a small amount of memory (2

bytes) and can be manipulated quickly. Variables

should be of type INTEGER whenever possible to save

time and memory.

-2- Real numbers are denoted by REAL and have the same

value range and number of significant digits as

BASIC floating-point variables. A floating-point

number may be in the range +/- 1.70141183E+38. The

number of significant digits is limited to 9. Each

floating-point number occupies five bytes in

memory. In contrast to BASIC, the first character

of a real number may not be a decimal point. If the

absolute value of the number is less than one, a

zero must precede the decimal point:

.00315 must be written as 0.00315

The conversion from INTEGER to REAL and back

again is done automatically, if it is required in a

calculation and is possible. When converting from

REAL to INTEGER, the places after the decimal are

simply ignored, as is the case with the DIV and NOD

operators and the assignment of a floating-point

result to an INTEGER variable.

-3- Alphanumeric characters are denoted by CHAR and

CHAR variables may contain any of the 64's

printable characters, including color and cursor

control characters. Alphanumeric characters are

enclosed in quotation marks. The CHAR type may not

contain strings; the data structure string is used

for this purpose and is explained in chapter 6.

-4- Variables of type BOOLEAN may contain either of two

values: TRUE or FALSE. All comparison operations

yield a BOOLEAN value. A BOOLEAN value is a

statement of the truth of the result of a

mathematical operation. Such a result is generally

tested by an IF statement. The values TRUE and

FALSE may also be assigned to a variable and later

tested. This is useful for flags, for instance. The

two values TRUE and FALSE are reserved words in

Pascal 64.

- 7 -

c

c

c

Abacus Software PASCAL-64

3.2 Mathematical operations

The following oatheoatical operations are possible in
Pascal 64:

+> -» *. / These operations work the same way as in

BASIC and may be used with either REAL or

INTEGER values and variables.

** This operator corresponds to the BASIC

operator * and is used for exponentiation.

The character " is reserved for use with

pointers in Pascal (chapter 9). Standard

Pascal does not have an exponentiation

operator.

DIV This operator perforns a division but

yields an INTEGER value and is therefore

executed faster.

NOD This operation is the counter part of DIV.

It yields the mathematical remainder of an

integer division.

AND, OR These operators are the same as their

BASIC counterparts, yielding an INTEGER

value, and can be used for logical or

binary operations, that is, they can be

used with two BOOLEAN values to yield a

BOOLEAN value. They can also be used with

two integers and help with POKE and PEEK

operations for setting or testing

individual bits, as in BASIC.

The comparison operators >, <, =, > = , <=, and <> also

operate as in BASIC and may be used for all three data

types. The result of these operations is either -1 = TRUE or

0 = FALSE (a boolean value). Two such results nay be

combined with AND or OR and yield a result of true or

untrue. Loops (REPEAT, WHILE) and IF make use of this

conditional. Such a result can also be assigned to a boolean

variable and tested later. The function NOT(X) inverts a

boolean value, changing TRUE to FALSE or FALSE to TRUE.

In addition, Pascal has the following pre-definied
functions:

SIN(X), COS(X), TAN(X), EXP(X), ABS(X), PEEK(X), NOT(X)

correspond to the BASIC functions with

the same names. The argument may be of

type REAL or INTEGER.

- 8 -

Abacus Software PASCAL-64

c

TRUNC(X) yields the integer portion of a floating

point number and corresponds to the BASIC

function INT.

SQR(X) returns the square of a number.

SQRT(X) returns the square root of a number and

corresponds to the BASIC function SQR.

LN(X) returns the logarithm base e of a number.

ARCTAN(X) returns the inverse tangent of a number
and corresponds to the BASIC ATN.

ORD(X) converts a character to the corresponding
number code. Corresponds to the ASC
function in BASIC.

CHR(X) converts a number into a character is the
opposite of ORD. It performs the same

operation as BASIC'S CHR$.

SUCC(X) yields the successor of a variable which

is the value plus one for INTEGER
variables.

PRED(X) Predecessor of a value. SUCC and PRED are

generally used for user-defined data
types.

ROUND(X) rounds off a real number to the nearest
whole number, is equivalent to
TRUNC(X+0.5).

RND(X) returns a random number between 0 and 1.

c

Function operands must be enclosed in parentheses; this
applies even to the NOT function.

If your favorite function is missing, it can be implemented
through a function or formula library:

COT(X) : 1/TAN(X)

ARCSIN(X) : ARCTAN(X/SQRT(1-X*X))

COSH(X) : (EXP(X)+EXP(-X))/2
LOG10 : LN(X)/LN(10)

In Pascal, it is possible to define your own functions.
Chapter 5 explains how to do this.

All four data types can appear as a variable, variable
freld, constant, or direct number in mathematical
expression.

All variables used in a program or subroutine must be
declared before the start of the program, (see chapter 2).

- 9 -

c

c

Abacus Software PASCAL-64

3.3 Program header

The program header is the first part of a program and

may be omitted in Pascal 64. Most of the programs in this

manual do not have headers.

Format:

PROGRAM program name;

3.4 Variable declaration

The keyword VAR tells the compiler that you wish to

declare variables. The variable names are separated from

each other by commas; their type is indicated after a colon,

and a semicolon followed by a space separates this from the
next variables.

Example:

VAR A,B,TEST:REAL; X,COUNTER:INTEGER; A:REAL; M,N:CHAR;

A declared variable has no default value, not even

zero. You must assign a value to each variable in your

program before its contents are accessed, otherwise you will

receive a random value. The length of the variable names and

the number of variables is limited only by memory.

To define an array of a certain type, the variable type

is simply replaced with ARRAY[number..number] OF variable-
type;

VAR A,B,TBST:ARRAY[-5..1000] OF REAL;

This line defines the arrays A, B, and TEST with ele

ment number running from -5 to 1000. This corresponds to the

DIM command in BASIC. The indices of the array must be

placed within square brackets. Note that arrays of arrays

are allowed and can be used to define multi-dimensional

arrays (up to four dimensions). Note also that the indices

need not start at zero but can start and end with any

integer. This is described in chapter 6 in greater detail.

c

- 10 -

c

c

c

Abacus Software PASCAL-64

3.5 Constant declaration

The keyword CONST is placed before a list of constants

that are to be used in a program. A constant is a name that

is assigned a fixed value for the duration of the program.

The value" of a constant cannot be changed during program
execution. Examples are:

CONST PI=3.14159265; YES=-1; NO=0; PAREN=M(M;

The data type is automatically determined by the compiler. A
constant may not be assigned a new value within the program.

3.6 Declaration of user-defined types

In additional to the pre-defined data types, Pascal
allows you to define your own, using the TYPE command:

Example:

TYPE COLORS(BLUE,RED,GREEN,YELLOW,WHITE,BLACK)

Now variable of this type can be declared:

VAR CARPETCOLOR:COLOR;

and values assigned to them:

CARPETCOLOR:= GREEN;

The functions SUCC and PRED can also be used with these data
types.

SUCC(GREEN)=YELLOW is a TRUE statement.

These newly-defined data can appear anywhere within a
formula other numbers or constants may appear.

3.7 Arithmetic expressions

Writing an expression in Pascal is done the same way as

in BASIC. A set of operations, using algebraic hierarchy,
all variables and data types and unlimited use of

parentheses permitted in Pascal. The following exceptions
must be noted:

-A space must be placed before and after the operators AND,

OR, MOD, DIV, and IN so that the compiler does not think

these operators are part of a variable name. Variable

- 11 -

Abacus Software PASCAL-64

c

nanes are permitted to contain these operators meaning

COLOR is a legal name although it contains the OR

operator. Because the space in front of these operators

may be replaced by a carriage return, an expression may

span several lines. The space after these operators may

not be replaced by a carriage return, however.

-No other spaces may appear within an expression.

-The index of an array is placed within square brackets and

may be an expression. Indices may also be negative values

if such has been declared.

-User-defined functions may be used as pre-defined funct

ions; function arguments may be constants, variables, or

expressions.

-The negation of a variable using the unary minus

is not allowed:

B:= -B; must be replaced by B:= B*-l;

operator

c

The calculation hierarchy in Pascal is slightly different

than that in BASIC:

-The parentheses have the highest priority. This also app

lies for function parameters, which must be enclosed in

parentheses.

-Then the operators *,

cuted.

/, **, DIV, MOD, and AND are exe-

-Next, the operators +, -, and OR have precedence.

-Last, the comparison operators (<, >, =, <>, <=, >=) and

the set operator IN are executed. Chapter 8 contains more

information about sets.

The logical operators AND and OR do not have the equal

priority in this hierarchy. This is according to the Pascal

standard, however, and is therefore implemented in Pascal

64. It is recommended that parentheses be used in express

ions involving these operators to avoid errors.

c
3.8 The Pascal assignment statement

In order to assign a value to a variable,

following assignment instruction:

variable:= expression;

one uses the

- 12 -

c

c

c

Abacus Software PASCAL-64

or for arrays:

variable[expressionl]:= expression2;

The variables on the left side are assigned the result

the of the expression on the right side. This assignment is

similar to the assignment in BASIC. The primary difference

is that in Pascal, a colon is required before the equal sign

in order to distiguish it from the equality comparison

operator. In addition, a space oust follow the equal sign

because the assignment operator is a Pascal command and a
reserved word (see chapter 2).

Example:

FIELD[3+4]:= SIN(B);

The sine of 8 is assigned to the seventh element of the
array, assuming the array is of type REAL.

3.9 Input and Output

In order to read a number or character from the
keyboard, one uses the READ command:

READ (variablel,variable2,...,variableN);

This command reads values into the variables separated by

commas. When reading numbers, the values must be separated

from each other by a space or RETURN. If the variable is of
type CHAR, only one character is read.

The READLN statement may be used instead of the READ

statement. The READLN statement waits for a RETURN at the
end of the input:

READLN (X,Y);

If the following input is entered:

12 32.5 4 <RETURN>

then the first two numbers are assigned to the variables X

and Y, respectively, the number 4 is ignored, and the cursor

moves to the next line. The READ statement saves the number
4 for the next input.

To output results, Pascal has the WRITE statement:

WRITE (variable,expression,"text",...);

It is possible to output the result of any desired

expression with the WRITE statement. In addition, text

- 13 -

c

c

c

Abacus Software PASCAL-64

placed within double quote marks are also be printed. Text
may be comprised of any characters which can be represented

within the double quote narks (such as cursor control

characters). If an array of type CHAR is output without
specifying the index, the entire array is printed as a

string (chapter 6). With values of type BOOLEAN or of a

user-defined type, the corresponding number is printed.

The WRITELN statement is just like the WRITE statement,
except that it places a RETURN at the end of the output. To

print just a RETURN, use the WRITELN statement without
parameters:

- WRITELN;

Corresponding BASIC commands are:

READLN

WRITELN

WRITE

INPUT

PRINT

PRINT

When entering multiple numbers, they must be separated by
spaces, not by commas as in BASIC.

Unfortunately, the kernal of the Commodore 64 contains
a small error. If an input takes place on the same line as

additional input or some output such that the input exceeds
the end of the line, the entire line is read as input. The
following BASIC program illustrates this:

10 INPUT"Text longer than 40 characters1*; A$: PRINTA$

Not only is the data assigned into the string variable
A$, but the prompt text also become part of A$ as well.

Becasue this error is not in the BASIC interpreter but in
the kernal, it also occurs in Pascal 64.

The READ statement can be used with a variable of type

CHAR to read individual characters. The cursor appears on

the screen and characters are read until RETURN is pressed.
To avoid this, the GET statement can be used instead:

Format:

GET variable;

This statement corresponds to the BASIC GET command. It

fetches a character from the keyboard buffer and returns it
in the given variable. If the keyboard buffer is empty, a
CHR(O) is returned.

- 14 -

c

c

Abacus Software PASCAL-64

3.10 Formatted numeric output

In Pascal it is possible to output numbers in a uniform

format. This is permitted on the screen or printer (chapter

7) using the WRITE or WRITELN statements.

Format:

WRITELN (expression:valuel:value2);

The two values may be numbers or variables. The first value

gives the total length of the output. If the output is

shorter than this length, the output is right-justified
within a field of valuel spaces. The second value gives the

number of places after the decimal. Numbers with an exponen

tial portion (numbers that must be represented in scientific

notation) cannot be formatted in this manner. To line up

decimal points on a column of numbers, chose the same values

for all of the output. The decimal point is placed at

valuel-value2. For this reason, the first value must always
be greater than the second.

With the commands we have discussed so far, it is

possible to write a small Pascal program:

5 PROGRAM FIRST;

10 VAR INPUT,RESULT:REAL;

20 (* NO SUBROUTINES NECESSARY *)

30 BEGIN (* START OF THE MAIN PROGRAM *)

40 WRITELN ("I AM WAITING FOR A NUMBER.");
50 READLN (INPUT);

60 RESULT:= SIN(INPUT);

70 WRITELN (HTHE SINE OF THE INPUT IS:M,RBSULT:10:4);

80 END. (* END OF THE MAIN PROGRAM *)

This program can be compiled and executed as described
in chapter 1.

c

- 15 -

c

c

Abacus Software PASCAL-64

Chapter 4

4.1 Control structures

Loops and conditional branches are used to control the

order in which program statements are executed. You are

already familar with one type of loop from BASIC: the FOR

... NEXT loop. You are also acquainted with IF ... THEN

statement for conditional branching. This branch is limited

to a single line in BASIC. In Pascal, the end of the line is

treated as a space, making it possible for the THEN portion

of an IF ... THEN statement to span multiple lines. The

BEGIN and END; markers are used to set off the block which

are executed if the condition is true (the THEN portion). In

Pascal, a block demarcated by BEGIN and END; may appear

anywhere a single statement is allowed.

BASIC also has the capability to force and

unconditional branch with the GOTO command. Because of

Pascal's efficient structured commands, this unstructured

statement is unnecessary and contradicts the concept of

Pascal. For the sake of completeness, it is included anyway,

although it should be used only very rarely.

c .. 2 Loops

4.2.1 The REPEAT statement

Format:

REPEAT block UNTIL condition;

REPEAT and UNTIL replace the block markers BEGIN and END.

Operation:

The statements of "block" are be executed, the

condition (comparison or any other expression which returns

a boolean value) is checked, and the statements of "block"

are re-executed provided that the condition has not been

satisfied (is FALSE). The block is executed until the

condition is satisfied (TRUE) at which time execution

resumes with the statements following the UNTIL.

Example:

10 VAR COUNTER:INTEGER;

20 BEGIN COUNTER:= 1;

30 REPEAT

40 WRITELN (COUNTER);

50 COUNTER:= COUNTER+1;

60 UNTIL COUNTER)10;

70 END.

- 16 -

c

c

c

Abacus Software PASCAL-64

This program prints the numbers 1 through 10. The

number 11 is not printed since the condition is checked

firset and found to be satisfied. Note that the variable

COUNTER is first defined before it is used.

4.2.2 The WHILE statement

Format:

WHILE condition DO block;

The condition is checked and the block is executed only

if the condition is TRUE. At the end of the block, the

condition is again checked and the block re-executed

depending on its truth value. If the condition is false,

execution continues with the statement following the block.

In contrast to the REPEAT/UNTIL structure, the block is not

executed at all if the condition is false to begin with,

whereas the block is always executed at least once with
REPEAT/UNTIL.

Example:

10 VAR COUNTER:INTEGER;

20 BEGIN COUNTER:= 1;

30 WHILE COUNTER<11 DO BEGIN

40 WRITELN (COUNTER);

50 COUNTER:= COUNTER+1;

60 END; (* END OF THE LOOP *)

70 END.

This program also prints the numebr 1 through 10. If

the counter equals 11, the condition is no longer satisfied

and the block is skipped.

4.2.3 The FOR statement

Format:

FOR variable:= start value TO end value DO block;

The variable is initially assigned the start value, the

block is executed, and the variable is incremented by one.

The block is again executed and the variable incremented

until the variable is greater than the end value immediately

following its incrementation. If the start value is larger

than the end value at the start of the loop, the block is

not executed. Program execution continues once the end value

is exceeded. The start and end values may be expressions and

the variable must be of type INTEGER. The end value is

recalculated each time through the loop, allowing it to be

- 17 -

c

c

Abacus Software PASCAL-64

changed within the loop.

The loop can also be made to count down:

FOR variable:= start value DOWNTO end value DO block;

The variable is decremented and the block is skipped when

its value is smaller than the end value.

Example:

10 VAR COUNTER:INTEGER; BEGIN

20 FOR COUNTER:= 1 TO 10 DO

30 BEGIN WRITELN (COUNTER); END;

40 END.

Again we have a program which prints the number 1

through 10. By using a FOR loop, the initial assignment of

the counter, the incrementation of the variable, and the

checking of the condition are all done automatically. The

WHILE command must be used to increment the variable by a

number other than +1 or -1. If the block consists of only

one statement, the BEGIN and END may be omitted.

As we mentioned before, structures may be nested within

a block. The nesting depth is arbitrary, but may need to be

increased at compile time (see chapter 1).

As you can see, Pascal offers several different ways of

formulating a program. The best method depends on the prob

lem at hand. You should become familiar with all of the

types of loops. REPEAT and WHILE can be used for more than

just counting loops. The following program waits for a
keypress:

10 BEGIN

20 REPEAT

30 UNTIL PEEK(203)<>64;

40 END.

Memory location 203 contains the code for the currently

pressed key. If no key is being pressed, the location con

tains 64. The memory addresses 0 through 1023 are the same

in Pascal as they are in BASIC. Other system addresses are

also retained (such as the sprite registers or the address
of the screen memory).

c

- 18 -

c

c

c

Abacus Software PASCAL-64

4.3 Conditional statements

4.3.1 The IF statement

Format:

IF condition THEN blockl; ELSE block2;

or

IF condition THEN blockl;

If the condition is fulfilled (TRUE), blockl wwill be
executed, otherwise block2 will be executed, if it exists.

Example:

10 VAR INPUT:REAL;

20 BEGIN

30 READLN (INPUT);

40 IF INPUT<5 THEN

BEGIN WRITELN (MTHE INPUT IS SMALLER THAN 5W); END;
50 ELSE BEGIN

WRITELN ("THE INPUT IS GREATER THAN OR EQUAL TO 5M); END:
60 END.

Since the blocks in this example are only one statement
long, the BEGIN and END may be omitted.

This program makes only a rough statement about the
variable INPUT. The following instruction allows a more
exact statement about a variable or expression:

4.3.2 The CASE statement

Format:

CASE expression OF

number,number,number,...,number: blockl;
number,...,number: block2;

number,...,number: blockN;

END;

The numbers must be of type INTEGER, although characters of
type CHAR may also be used instead if the expression yields

such a result. Floating-point numbers are not allowed.

Operation:

The expression is evaluated and the block associated

with the number or character equal to the result of the
expression is executed. The END; denotes the end of the CASE

list and belongs to the CASE statement, not to a block. If
no match is found for the result of the expression,

- 19 -

c

c

c

Abacus Software PASCAL-64

execution continues with the statement immediately following

the END; of the CASE statement.

Example:

10 VAR INPUT:INTEGER;

20 BEGIN

30 READLN (INPUT);

40 CASE INPUT OF

50 ; 1,2,3: BEGIN WRITELN ("1 TO 3"); END;

60 ; 4,5,6: BEGIN WRITELN ("4 TO 6"); END;

70 ; 7,8,9,10,11: BEGIN WRITELN (M7 TO 11"); END;

80 END; (* OF CASE *)

90 END. (* OF PROGRAM *)

The semicolon at the start of each line serves only to

separate the line numbers from the numbers in the CASE

statement.

This program gives a more exact description of the

contents of the variable INPUT than the previous program.

4.4 The GOTO statement

Format:

GOTO label;

label: statement;

As soon as the program encounters a GOTO statement, the

execution of the program is interrupted and resumes at the

label. The jump need not be forward. The label can be a

number or a name. It is recommended that the label contain

information on the line numbers between which the jump

occurs so that the program flow may followed easily. Each

label may be jumped to from only one GOTO.

Example:

10 VAR COUNTER:INTEGER;

20 BEGIN COUNTER:= 1;

30 FRON60TO30:

40 WRITELN (COUNTER);

50 COUNTER:= COUNTER+1;

60 IF COUNTER<11 THEN GOTO FROM60TO30;

70 END.

This program also outputs the numbers from 1 to 10, but

this canot be seen directly from the program text, only by

following the jump. You should use the GOTO only in special

- 20 -

c

c

Abacus Software PASCAL-64

cases since it can be avoided in virtually all instances,

although this may not be obvious to a BASIC programmer. The

elimination of GOTO will make your programs easier to under

stand and modify.

In Pascal, the destination of a jump is limited. A jump

into a block is not allowed. A jump within the same block is

permitted, as is a jump to the outside of a block. JUmping

out of a subroutine or CASE structure is stricly forbidden.

To exit a subroutine, it suffices to jump to the end of the

routine. There are similar restrictions in BASIC. Exiting a

subroutine with GOTO can result in a stack overflow and a

jump into a loop results in a NEXT WITHOUT FOR.

4.5 Using control structures

In order to illustrate a practical use of control

structures, we present the following program which prints

the prime numbers under 20000. The program uses the princ

iple in which all of the multiples of prime numbers are

removed from a table because they are no longer prime num

bers. The first number will take a fairly long time to

calculate. The important part is to note the nesting of the

blocks.

All END statements are followed by a comment which

indicates to which structure they belong. All BEGIN and END

statements which are optional are shown as comments.

10 CONST N=10000;

20 VAR Z:PACKED ARRAY[0..10000] OF BOOLEAN;

c

30 K ,I:INTEGER;

40 BEGIN

50 FOR I:

60 ;

70 ;

80 ;

(*

= 1 TO N DO

BEGIN *)

Z[I]:= TRUE;

(* END OF FOR *)

90 WRITELN (2);

100

110

120

130

140

150

160

170

180

190

200

210

220

230

FOR I

; (*
; if

; (*
BND.

:= 1 TO N DO

BEGIN *)

Z[I] THEN

BEGIN

WRITELN (2*1+1)

K:= 1;

WHILE I+K*(2*I+1)<=N DO

BEGIN

Z[I+K*(2*I+1)]:= FALSE;

K:= K+l;

END; (* OF WHILE *)

END; (* OF THEN *)

END OF FOR *)

(* OF THE PROGRAM *)

Type this program in and compile it as described in

Chapter 1. It runs significantly faster than a corresponding

- 21 -

c

Abacus Software PASCAL-64

BASIC program even though it executes a complex index calc

ulation in order to save space. Bnter the following line:

45 INTEGER;

and recompile the program. The program should run even
faster than before. We will say more about this command in
chapter 10 so do not use in other programs until then.

c

c

- 22 -

c

c

c

Abacus Software PASCAL-64

Chapter 5

5.1 Procedures and functions

The procedure defintions in Pascal are placed before

the oain program and after the variable declarations. They

consist of a parameter portion, the procedure variable

declarations, nested procedure declarations, and the

procedure block. This construction is similar to that of the

main program.

5.1.1 Procedure declaration

Format:

PROCEDURE name (parameter list);

variable declarations

nested procedure declarations

block;

More procedure declarations may follow the END;

statement of the block. The parameter list, the variable

declarations and any nested procedure declarations are all

optional. If procedure has no parameters, the semicolon is
placed immediately following the name.

Variable declarations were previously explained in

Chapter 2. The declaration of a procedure nested within a
procedure follows the same pattern as the declaration of a

procedure of the main program. An outer procedure's

variables belong to both the outer procedure and the nested

procedure. Variables of the main program can be used by all

procedures as well as the main program. For this reason they

are called global variables. Each program block should use

only its own variables in order to avoid confusion. Passing

data between procedures and the main program should be

accomplished via parameters, variables which the main

program or calling routine defines are declared in the
parameter list.

There are two types of parameters:

Value parameters:

These parameters are declared as variables, but without

the word VAR. When the procedure is called, the value

parameters are given a value by the calling program.

Variable parameters:

The word VAR in front of a declaration is used to

distiguish variable parameters from value parameters. A

variable parameter is passed by the PROCEDURE call, and

can be manipulated under the name of the variable

parameter. It is thereby possible for the procedure to

use variables of the calling program without the need

for these variables to have a specific name. Each call

- 23 -

c

c

c

Abacus Software PASCAL-64

of the procedure can pass a different variable. If the

value of a variable paraneter is changed by a

procedure, the value of the variable in the calling

program is also changed. Variable parameters offer the

capability of passing results to the calling routine.

The paraneters of a procedure can also be ARRAYS or

RECORDS. These data types oust be declared as variable

parameters. More about arrays and data records in found in

the next chapter.

Example:

PROCEDURE TEST (VAR A,B:INTEGER; CrREAL; VAR X,Y:CHAR);

The variables A, B, X, and Y are variable paraneters while

the variable C is a value parameter. All parameters can be

used by the procedure as variables. The difference between

parameters and variables declared within the procedure is

that parameters have a value defined by the calling routine,

whereas the procedure variable are initially undefined.

5.1.2 Calling procedures

Format:

name (parameterl,parameter2,...,parameterN);

The values of the parameters are passed to the named

procedure and this is then executed. Variable parameters may

only be variables, not expressions, due to their nature.

Example:

TEST (I,K,COS(3*5+Q),S,N);

A procedure may also call other procedures. If the

called procedure does not belong to the calling procedure,

it must be previously declared. A procedure name may not

have the same name as a Pascal reserved word.

Here is an example of a procedure named INPUT which has

as a parameter a real variable:

10 VAR X:REAL;

20 PROCEDURE INPUT (VAR NUMBER:REAL);

30 (* NO PROCEDURE VARIABLES NEEDED *)

35 (* NO NESTED PROCEDURES NEEDED *)

40 BEGIN

50 WRITELN ("PLEASE ENTER A NUMBER");

60 READLN (NUMBER);

- 24 -

c

c

c

Abacus Software PASCAL-64

70 END; (* PROCEDURE *)

80 BEGIN (* OF THE PROGRAM *)

90 INPUT (X);

100 WRITELN ("YOU ENTERED ",X,".");

110 END.

The procedure works like a new statement. It would be

possible, for instance, to expand the graphics statements of

Pascal 64 using procedures (see chapter 12).

In many cases, it also desirable to be able to define a

new function. Pascal offers us this capability.

5.1.3 Function declaration

Format:

FUNCTION name (parameter list):function type;

variable declarations

subroutine declarations

block;

Everything that was said about procedures also applies

to functions, except that the parameter list must contain at

least one element. In addition, a funtion variable is def

ined having the name of the function and the type given as

function-type. The type may be any of the four basic data

types or a one-dimensional array. The ability to use arrays

is important for writing string functions, for instance.

The function variable must be assigned a value, which

represents the result of the function, within the function

block. Otherwise, the function variable can be treated as a

normal variable. For arrays, the individual fields must be
assigned.

Calling a function is done the same way pre-defined

functions are called. The parameter passing works in the
same as for procedures.

Here is an example of a function named FACTORIAL. It

computes the factorial of a value-parameter that is passed

to it (N) and returns this as a real number. The factorial

of a positive integer n is defined as n(n-l)(n-2)(n-
3)...(3)(2)(1).

10 VAR INPUT:INTEGER;

20 FUNCTION FACTORIAL (N:INTEGER):REAL;

30 VAR COUNTER:INTEGER;

40 BEGIN

50 FACTORIALS 1;

60 FOR COUNTER:= 1 TO N DO

70 FACTORIALS FACTORIAL*COUNTER;

80 END; (* OF THE FUNCTION *)

- 25 -

c

c

c

Abacus Software PASCAL-64

90 BEGIN

100 READLN (INPUT);

110 WRITELN (FACTORIAL(INPUT));

120 END.

5.2 Recursion

In Pascal, it is possible for a procedure or function

to call itself. This concept is called recursion. A

recursive routine oust of course have some means of

determining when to stop calling itself based on when a

certain condition is met. In contrast to BASIC, the

variables initialized in or passed to one procedure call are

not destroyed by successive calls. After returning from a

call, the variables are returned to their original

condition. Each new call generates new local variables which

disappear again after each return. The possibilities which

local/global definitions permit are shown clearly in

recursion. Many programs which would normally require a

stack to manage data can be written using recursion instead.

One example of recursion is the number of moves ahead which

a chess program calculates. The new generation of variables

applies to all variables in the subroutine, even for arrays

and complex data structures.

This is an example of a recursive function to calculate

factorial. As you recall, the factorial of n is defines as

n(n-l)(n-2)...(3)(2)(l). Here we calculate n factorial by

first calling FACTORIAL with the parameter n, which then

calls itself with a new parameter, (n-1), until the

parameter passed to the function is equal to 1.

10 VAR INPUT:INTEGER;

20 FUNCTION FACTORIAL (N:INTEGER):REAL;

30 BEGIN

40 IF N>1 THEN FACTORIALS FACTORIAL (N-1)*N

50 ELSE FACTORIAL:= 1;

60 END;

70 BEGIN

80 READLN (INPUT);

90 WRITELN (FACTORIAL(INPUT));

100 END.

Since the parameter n is decremented with each new

call, it will eventually reach the limiting or ending value

(1). The recursion ends and all of the n's from the various

levels will be multiplied together.

Recursion can also be set up by having a subroutine

call a higher-ordered subroutine and having this subroutine

call the lower-level routine. Recursion can also become

even more complex, involving multiple subroutines.

- 26 -

Abacus Software PASCAL-64

c

5.3 Exiting a procedure

Under certain conditions, it may happen that the rest

of a procedure need not be executed, such as when an output

subroutine determines that an output device is not

connected. Naturally, this problem could be solved with an

IF-THEN-ELSE

command EXIT.

condition. It is simpler however to use the

Format:

EXIT;

This statement causes the current procedure to stop
execution and forces a return to the calling routine. When

used in the main program, EXIT causes the program to end.
Since EXIT corresponds to a GOTO to the end of the

procedure, it should be thought in much the same manner as

the GOTO, although it is somewhat clearer.

c

c

- 27 -

Abacus Software PASCAL-64

c

Chapter 6

In the previous chapter we presented all of the basic

elements of Pascal so that you are now ready to develop your

own Pascal programs. Chapter 13 will assist you with this.

Now, however, we turn to the more advanced features of
Pascal.

c

6.1 Data structures

In Pascal we have the ability to structure not only

programs but data as well. A data structure consists of

several elements. The data type of these elements may be the

same throughout the structure (ARRAY) or may be different

from element to element. It is important to note that the

elements of a structure do not have to be one of the four

basic types, but can themselves be structures. Because a

data structure consists of several elements, exactly as a

program block consists of several statements, it seems

reasonable to refer to data structures as data blocks.

Pascal offers many possibilities for working with data

blocks, so in the following chapters, we will refer to an

arbitrary data structure as a data block. For example, the

statements for manipulating strings can also be used for

other structures despite the fact that they were not

specifically written for these structures.

6.2 ARRAYS

c

An array can be composed of elements of any desired

type of data. You are already familiar with arrays from

BASIC (DIN command, etc). Each array must be declared before
it can be used as a variable:

VAR name:ARRAY[number1..number2] OF data type;

You have already seen this declaration in chapter 3.

The two numbers in the declaration give the minimum and

maximum index of the array. In contrast to BASIC, the min

imum index need not be zero. In fact, both number may be

negative. Numberl must of course be smaller than number2.

Theoretically, the numbers may be any desired integers, but

the practical limit is the amount of memory available for

variable storage. Special attention must be paid to this for

arrays of type REAL since real variables require 5 bytes

each. The data type can be any desired data type, even
another array:

- 28 -

c

c

Abacus Software PASCAL-64

VAR ARR3D:ARRAY[1..10] OF ARRAY[2..5] OF

ARRAY[-3..4] OF REAL;

To save space, this can also be written:

VAR ARR3D:ARRAY[1..10,2..5,-3..4] OF REAL;

An array can have up to four dimensions. An array

element is accessed by placing the index in square brackets

behind the array name. The index may be an expression. The

array element selected in the manner may be used as normal

variable:

ARR3D[X,Y,Z]

This is how an element of the array is accesed. The

individual element is of type REAL can be manipulated as any

REAL variable. A three-dimensional array is a two-dimension

al array of one-dimensional arrays. One can access an ele

ment of this two-dimensional array and receive as a result a
single-dimensional array:

ARR3D[X,Y]

This gives us a data block with contains all of the

array elements having the first dimension X and second

dimension Y. The data block is a one-dimensional array. The

following expression yields a two-dimensional array:

ARR3D[X]

and the entire three-dimensional array is accessed with:

ARR3D

All operators which apply to data blocks may be used on such

arrays. One such operator is the assignment operator:

TEMPARRAY:= ARR3D;

TEMPARRAY[1,2]:= ARR3D[4,5];

Naturally, only data blocks having the same size and

index range (that is, the same type) may be assigned to each

other. Another possibiltiy is that data blocks may be trans

mitted to subroutines as parameters. Data blocks can also be
written to and read from files (chapter 7).

c

- 29 -

Abacus Software PASCAL-64

c

6.3 RECORDS

Pascal's abilities to work with data blocks do not end

with arrays. For example, an address list contains not only

characters but also numbers. This combination of several

different data types is difficult to represent in a single

array. Pascal offers the ability to combine several data

types into one cohesive unit (RECORD). The individual var

iables are set off by RECORD and END; and represent a new

data type.

VAR name,name,...,name:RECORD

namel:data type;

name2:data type;

c

c

nameX:data type;

END;

The data types of the variables may be any of the basic

four, they may be arrays, and even other records. The fol

lowing declaration is possible:

VAR ADDRESS:RECORD

NAME:RECORD

FIRSTNAME:ARRAY[1..10] OF CHAR;

LASTNAME:ARRAY[1..10] OF CHAR;

STREET:ARRAY[1..15] OF CHAR;

CITY:ARRAY[1..15] OF CHAR;

STATE:ARRAY[1..2] OF CHAR;

ZIPCODE:INTEGER;

END;

An individual record element is accessed by placing a

period followed by the name of the element behind the record

name. The following types of references can be made:

ADDRESS.ZIPCODE

ADDRESS.CITY

ADDRESS.NAME.FIRSTNAME

ADDRESS.NAME.LASTNAME[1]

ADDRESS.NAME

ADDRESS

is of type INTEGER

is an array of type CHAR

is an array of type

character

is the first character of

the last name

is a two-element RECORD

contains all of the

address data

These parts of the record can be manipulated as desired

since they either refer to other records or are actually

variables. Data blocks can again be assigned to each other:

ADDRESS.NAME.FIRSTNAME:= ADDRESS.NAME.LASTNAME;

- 30 -

Abacus Software PASCAL-64

c

Records may also serve as subroutine parameters. All oper

ations possible with data blocks of type ARRAY are also

possible with records.

c

6.4 Combining RECORDS and ARRATs

Since we can make an array of any data type, we can

also make arrays of records. Several records of the same

type can thereby be brought together in an array:

VAR NAMELIST:ARRAY[1..100] OF

RECORD

FIRSTNAME:ARRAY[1..10] OF CHAR;

LASTNAME:ARRAY[1..10] OF CHAR;

END;

Records and arrays may be nested inside each other as

desired. The nesting of records is abitrary, the nesting of

arrays is limited to four dimensions. If the last data type

of a record is not a basic data type but always another

record, only three dimensions may be used. It should be

noted that an individual element of such a structure is

accessed first by the record element and then by

element:
array

NAMELIST.FIRSTNAME[10]

NAMELIST[11]

NAMELIST

NAMELIST.LASTNAME[20,2]

the last name of the tenth

person

both names of the 11th person

the entire file

the second letter of the last

name of the 20th person

A possible use of this file might be for sorting names

alphabetically because the following assignment is possible:

NAMELIST[X]:= NAMELIST[Y];

Records can be used for more than just addresses. They

may be used for any group of data which have something in

common or just belong together. A typical use might be the

three coordinates which denote a point in a three-dimension

al Cartesian coordinate system. Another mathematical use is

for storing complex numbers.

c

- 31 -

c

c

Abacus Software PASCAL-64

6.5 WITH statement

In nany cases, several successive references have to

aade to the sane record. Each time the record is accessed,

the record name must be given. This is made easier if we use
the WITH statement.

Format:

WITH record name DO BEGIN statements; END;

Example:

■ READLN (NAMELIST.FIRSTNAME[1],NAMBLIST.LASTNAMB[1]);
NAMELIST.FIRSTNAME[2]:= NAMELIST.FIRSTNAME[1];

This can be shortened to:

WITH NAMELIST DO BEGIN

READLN (FIRSTNAME[1],LASTNAME[2]);

FIRSTNAME[2]:= FIRSTNAME[1];

END;

The compiler places the record name in front of all

variables, providing doing so does not cause an error. If

several WITH commands are nested, the compiler places both

record names in front of the variable names. A nested WITH

construction must correspond to a nested RECORD structure.

Example program:

10 VAR DFILE:ARRAY[1..20] OF RECORD

20 FIRSTNAME:ARRAY[1..10] OF CHAR;

30 LASTNAME:ARRAY[1..10] OF CHAR;

40 END;

50 I:INTEGER; CHOICE:CHAR;

60 BEGIN

70 WITH DFILE DO BEGIN REPEAT

80 WRITE ("O=OUTPUT, I = INPUTrt); REALN (CHOICE);

85 WRITE (WRECORD?M); READLN (I);

90 CASE CHOICE OF

100 MOM: BEGIN WRITELN (FIRSTNAME[I],LASTNAME[I]); END;

110 "I": BEGIN READLN (FIRSTNAME[I],LASTNAME[I]); END;
120 END;

130 UNTIL CHOICB=M*"; END; END;

c

- 32 -

c

c

c

Abacus Software PASCAL-64

6.6 Working with strings

6.6.1 Subranges

In standard Pascal, a string is represented as an array

of characters. Since such an array represents a data block,
we already have operators for strings. In many cases, how

ever, we want to work with just part of the string, not the

whole thing. For this reason, Pascal 64 gives you the abil

ity to form subranges. To specify a subrange, you use the

starting and ending values, separated by two periods, in
stead of the array indices:

array[start value..end value]

The starting and ending values nay be expressions.
Since the subrange defined in this Banner is itself a data

block, all of the data block operations may be perforned on
it. A section can be formed from any array in any dimension.
The individual elements need not be one of the four basic

data types, although they are most often of type CHAR. In
all cases, the section must be the last dimension given. No
additional dimension indices may follow, even if the array
has additional dimensions. Array subranges may also be form
ed from ARRAY/RECORD combinations. The following examples
demonstrate the possibilities which are possible for string
manipulation:

The following arrays are defined:

VAR STRING1,STRING2:ARRAY[1..1000] OF CHAR;

To insert a character into a string, one uses the following
statements:

STRING1[55..1000]:= STRING1[54..999];
STRING1[54]:= "A";

The string structure from 54 on is moved up by one memory

location and the character "AM is placed in the vacated
location at 54. An entire string array may be inserted in
the same manner.

To delete the character again, one would write:

STRING1[54..999]:= STRING1[55..1000];

The order in which the arrays subrange are specified in
the assignment determines in which direction^the shift will
take place. In the first example, the upper subrange was
specified first, meaning that the shift direction is up. In

the second example, the shift direction is down since the
lower subrange is specified first. Many versions of Pascal
have similar expansions of standard Pascal for string man
agement, but the shift direction must usually be specified

- 33 -

c

c

c

Abacus Software PASCAL-64

explicitly (MOVELEFT, MOVERIGHT). In Pascal 64, the compiler

determines this automatically.

Data block assignments offer even more capabilities:

STRING2[1..50]:= STRING1[50..99];

The first 50 elements of the array STRING2 are assigned

the given subrange of STRING1. The ending value, and with it

the length of the subrange, is given twice in the assign

ment. This is not absolutely necessary. The compiler is only

interested in the length of the subrange to be manipulated:

STRING2[1..0]:= STRING1[50..99];

Since the array STRING2 starts with the index 1, we can

shorten the assignment still more:

STRING2:= STRING1[50..99];

With the statements and techniques we have learned so

far, it would not be difficult to write a simple word proc

essor. We have already shown examples of the two basic

functions of a word processor, insertion and deletion. Al

though moving entire array sections is done faster than

moving characters element by element with a loop, the speed

of the 64 is not limitless. With very large strings (20000

bytes), inserting a character may take several seconds. It

is a good idea not to insert characters one at time for this
reason.

Subranges of arrays are permitted whereever any other

type of data block is allowed. One exception is the variable

parameter of a subroutine, since only entire data structures

may be passed to subroutines.

6.6.2 The length of strings

Since not all of the characters of a string may be used

immediately, it is a good idea to have a marker for the end

of the string. Pascal 64 uses CHR(0) and fills all unused

elements of a string with this character when inputting from

the keyboard. When printing to the screen or printer, only

the characters preceding the CHR(0) are displayed and any

thing after the CHR(0) is ignored. The function LENGTH can

be used to determine the length of a string:

Format:

LENGTH(data block)

This function returns the number of elements in the array

- 34 -

c

c

c

Abacus Software PASCAL-64

preceeding a CHR(O). Although it may be used with other data

blocks, it has meaning only for strings.

Example:

STRING[1..LENGTH(STRING)]

returns all of the elements of the array up to the first

CHR(O).

STRING[1..LENGTH(STRING)+1]

returns all of the array elements up to and including the

first CHR(O) encountered. In this case, the CHR(O) MUST be

present•

Because each newly assigned string has an end and does

not necessarily occupy the entire array, programs must al

ways check for and include a CHR(O) at the end of a string.

Except for input, a CHR(O) is not automatically placed at
the end of a string.

6.6.3 Additonal string operations

The following statement is used to fill an array with a

character:

FILLCHAR (data block,character);

If the character chosen is CHR(O), all elements of the block

are cleared and considered to be defined.

The STR statement serves to convert a number into a string:

STR (expression,data block);

The result of the expression is converted into a character

string. The data block must be large enough to contain all

of the digits.

The inverse of STR is a function called VAL:

VAL (data block)

The data block (string) is converted to a number. This

corresponds to the BASIC command VAL.

There is a simple method for forming an array of type CHAR:

"Text for the array*

The text enclosed in quotation marks is a data block because

it is longer than a single array element. Note that standard

- 35 -

c

c

c

Abacus Software PASCAL-64

Pascal requires that strings be enclosed in single quotes.

Pascal 64 uses quotation marks (also called double quotes)

so that cursor and color control characters nay be inserted
into the string when using the BASIC editor. The data block

is automatically terminated with a CHR(O). You can
initialize an array as follows:

STRING:= MSOME TBXT FOR THE ARRAY";

The text may contain control characters.

The comparison operators <, >, =, <>, <=, >= are

defined for strings. The result of a comparison is
determined based on alphabetic ordering, as it is in BASIC.
A CHR(O) again acts as an end-of-string marker.

The expression STRINGKSTRING2 is TRUE if the contents of

STRING1 come alphabetically before the contents of STRING2;
otherwise it is FALSE.

The following program sorts strings:

10 PROGRAM SORT;

20 VAR ARR:ARRAY[1..2O] OF ARRAY[1..1O] OF CHAR;

30 VAR STRING:ARRAY[1..10] OF CHAR; I,J:INTEGER;
40 BEGIN

50 FOR I:= 1 TO 20 DO READLN (ARR[I]);

60 FOR J:= 1 TO 19 DO

70 FOR I:= 1 TO 19 DO

80 IF ARR[I]>ARR[I+1] THEN

90 BEGIN STRING:= ARR[I];

100 ; ARR[I]:= ARR[I+1];

110 ; ARR[I+1]:= STRING;

120 END;

130 FOR I:= 1 TO 20 DO WRITELN (ARR[I]);
140 END.

6.7 String functions

You may find that some string functions found in BASIC

are missing from Pascal 64. But since the result of a Pascal

function may be an array, it is easy to write your own
string functions:

10 VAR A,A1:ARRAY[1..100] OF CHAR;

20 FUNCTION MID (A:ARRAYf1..100] OF CHAR;

I,J:INTEGER):ARRAY[1..100] OF CHAR;
30 BEGIN

40 MID:= A[I..I+J-1];

50 MID[J+1]:= CHR(O);

60 END;

- 36 -

Abacus Software PASCAL-64

c

70 FUNCTION CONCAT (A,B:ARRAY[1..100] OF CHAR):

ARRAY[1..1OO] OF CHAR;

80 BEGIN

90 CONCAT:= A;

CONCAT[LENGTH(A)+1..0]:= B[1..LENGTH(B)+1];

100 END;

110 BEGIN

120 READLN (A,A1);

130 WRITELN (CONCAT(A,Al));

140 WRITELN (MID(A,10,5));

150 END.

c

c

Note that the variable A is declared more than once and

each time represents a different variable with a different

storage place, corresponding to the Pascal local/global

definitions. This means that in the main program you do not

have to worry about which variables the subroutines use. The

function MID requires the same parameters as the

corresponding BASIC function. The function CONCAT accepts

two strings as input, places one after the other, and

returns this single string. Both functions expect strings

ending with CHR(O) and return such an array. Additional

functions can easily be added in the same manner.

6.8 Packed arrays

Larger computers contain memory with more bits per word

than does the Commodore 64. It would be wasteful of memory

to assign an entire memory location to a variable which

might require just one bit (boolean). For this reason,

Pascal has the ability to pack multiple array elements into

a single memory location (PACKED ARRAY). On a computer with

an 8-bit word length, a packed array is usually not necess

ary. In addition, accessing a packed array takes longer

because of the additional calculations necessary to cross-

reference indices and parts of memory locations. A packed

array must first be UNPACKed before it can be accessed; the

computer does this automatically.

For microcomputers, this procedure has little import

ance. For that reason, only packed arrays of type BOOLEAN

are allowed in Pascal 64. A packed array may be accessed

directly.

Format:

VAR name:PACKED ARRAY[0..end value] OF BOOLEAN;

The packed array must have a starting value of 0 and

must have an ending value which is 1 less than a multiple of

8. If this is not the case, the compiler will automatically

round up the ending value. A packed array may be an element

- 37 -

c

Abacus Software PASCAL-64

of another array or a record, but only the last dimension

may be packed. A packed array may be accessed normally, each

element containing a value of TRUE or FALSE. No subranges

may be formed from packed fields. Each element requires only

one bit, meaning a field of 10000 elements requires only

1250 bytes. A packed array is ideal for very large arrays

which have only two possible values. An example can be found

in chapter 4.

c

c

- 38 -

c

c

c

Abacus Software PASCAL-64

Chapter 7

7.1 Files

In order to work with files, Pascal allows the commands

WRITE, WRITELN, READ, and READLN to be used with devices

other than the screen and keyboard. This is done simiar to
using file in BASIC.

Before a file can be opened, it must first be declared
as a variable.

VAR name,device address,secondary address:FILE;

The device address and secondary address are the same
paraneters that are used in the BASIC OPEN command. The OPEN

command logical file number is replaced by the name. The VAR

declaration reserves the name of the data structure FILE
which is used when opening and closing the file as below.

The file is actually opened by the RESET statement:

RESET (name,"filename,text,etc.");

The RESET statement can also be replaced with REWRITE.
It is not necesssary to use RESET and REWRITE to distinguish

between a read and write command because this is done
through the secondary address (datasette) or through the
text appended to the filename (disk). The RESET statement
corresponds to the OPEN command in BASIC. The filename is

unnecessary for many devices (printer) and may be omitted in

these cases. The filename may also be replaced with a data

block (string). The other parameters for RESET are already
given in the file declaration.

A file is closed with the CLOSE statement:

CLOSE (name);

A file should always be closed before the end of a program
so that no data is lost.

A file is accesed through the existing input/output
commands (WRITE, WRITELN, READ, READLN). The filename is

placed before the parameter list for any of the statements,
so the computer knows which file is being accessed. The data
is output exactly as it would be on the screen and can be
read in again in a corresponding manner. To read data with
READLN, the data must have been written in the corresponding
format, i.e. it must have been written with WRITELN.

- 39 -

c

c

c

Abacus Software PASCAL-64

Example:

10 VAR CHARACTER:CHAR; DISK,8,8:FILE;

20 PRINTER,4,0:FILE; STATUS:INTEGER;

30 BEGIN

40 RESET (DISK,MTESTFILE,S,RM); RESET(PRINTER);

50 REPEAT

60 READ (DISK,CHARACTER); STATUS:= PEEK(144);

70 WRITE (PRINTER,CHARACTER); WRITE (CHARACTER);

80 UNTIL STATUS=64; (* END OF LOOP *)

90 WRITELN; WRITELN ("DONE."); CLOSE (DISK);

100 CLOSE (PRINTER); END.

The program reads a file saved on the disk under the

name TESTFILE and then prints this on the screen and

printer. Since we used a variable of type CHAR, this is done

in single characters at a time.

7.2 Error channel and file status

The function PEEK(144) returns the file status of the

last input or output function and corresponds to the BASIC

variable ST. If the memory location 144 contains a 64, the

end of the file was reached.

A file is automatically predeclared by Pascal 64 for the

disk error channel:

VAR ERROR,8,15:FILE;

This declaration need not be written in a program, it is

automatically included by the compiler. The error channel is

opened with:

RESET (ERROR);

Now file messages can be received or commands sent over this

file. The error channel is closed with:

CLOSE (ERROR);

Remember that closing the error channel also closes all

other files on the disk. The error channel should only be

closed at the end of the program.

- 40 -

c

c

c

Abacus Software PASCAL-64

7.3 Input/output of data blocks

As indicated in chapter 6, it is possible to input and

output data blocks. Several cases must be distiguished:

-The only data blocks which it makes sense to output to the

screen or printer are those of type CHAH. The data block

will then be printed as a string. A CHR(O) causes the
output to cease.

-It is also possible to input only data blocks of type CHAR

from the keyboard. Pressing the RETURN key indicates that
the input is done and the remaining elements are filled
with CHR(O).

-It is possible to input or output data blocks using the

disk and all other devices with device numbers greater than
7 (such as a second disk). The data block is thereby
written or read byte by byte. This also applies to data

blocks of type CHAR—a CHR(O) is treated as any other
character.

Particularly interesting is the input and output of

data by records or even by entire files with a single

statement. Sequential files are not well suited for this

sort of access since all of the preceding records must be

read before a given record can be read in. Sequential files
do not permit direct access to their elements.

7.4 Relative files

Relative files represent an efficient method of data

access. Because the disk drive user's manual does not ex

plain the use of realtive files in detail, we will begin

with a discussion of the principles of relative files.
Pascal allows relative files to be used and worked with with

greater ease than does BASIC. In addition, the Pascal data

type RECORD may be used with relative files. (The RECORD*

statement used for relative files in BASIC 4.0 should not be

confused with the RECORD data type in PASCAL. Note also the

temporary distiction between a relative record and a Pascal
RECORD)

The principle of relative files is a sequence of sever

al data records. All records have the same length so that

only the number of the record need be used to allow the disk

to find it in the shortest possible time. The entire file

need not be read in as is the case with sequential files.

The individual data record may be written or read in a

manner similar to sequential files. Writing and reading may

even be done simultaneously—it is not necessary to desig

nate a relative file as read or write. The length of the

- 41 -

c

c

Abacus Software PASCAL-64

record may not be exceeded under any circumstances, however.

If a specific portion of a data record is to be accessed,

the data pointer may be positioned over individual bytes.

The following procedures are used for managing relative
files:

Creating a relative file:

- The file is opened and the length of the data record

is given (max. 254 bytes).

- The number of the last data record of the file is
denoted.

Writing a record:

- The file is opened if it is not already opened.

- The file pointer is positioned to the data record to

be written. If this record has never been used, the

disk will respond with a RECORD NOT PRESENT error.

This message can be ignored in this case.

- The data record is written.

Reading a record:

- The file is opened if required.

- The file pointer is positioned to the record to be

read. If this record has never before been written,

the error message RECORD NOT PRESENT will be sent

over the error channel, and this may of course NOT be
ignored.

After all of the changes or additions have been made to a

relative file, it must be closed in order to prevent data
from being lost.

The advantages of relative files are clear:

- Direct and therefore faster access of individual data
records and even individual bytes.

- Presevation of the main memory as direct access
memory.

- The ability to read and write in the same file.

Additional information and uses of relative files and

other types of files can be found in the book The Anatomy of
I§41 Disk Driven

c

- 42 -

c

c

c

Abacus Software PASCAL-64

7.5 Using relative files

A relative file must be declared as any other data

structure as a variable:

VAR name,device address.secondary address:FILE;

This corresponds to the declaration of sequential files.

To open a relative, a variable of type INTEGER (or CHAR)

must be present which contains the length of the data rec

ord. In addition, the disk error channel must be open.

RESET (name,"filename,L,",variable);

The record length is replaced with a dash "-" and then by

the contents of the variable. A number may be used directly,

instead of the variable. The filename together with the file

type "L" and the dash may be combined into an array of type

CHAR. In a certain sense, a relative file in Pascal is

really a FILE OF RECORD. Because the organization of rel

ative files is handled by the disk drive and not by the

computer, the data type FILE in Pascal 64 requires no fur

ther information.

A relative file is closed as usual with:

CLOSE (filename);

The positioning to a record is done with the statement SEEK:

SEEK (name,record number,byte number);

If the byte number is omitted, the first byte will be

accessed. The record number and byte number may also be

expressions. The error channel must be opened before this

statement can be used.

The desired data record can now be read or written at

the given byte position. To determine the length of a

record, the lengths of the individual basic data types must

be summed. When using WRITELN instead of WRITE, an extra

byte must be added for the trailing RETURN.

The following program demonstrates the use of relative
files:

10 VAR DFILE,8,2:FILE;

20 DATA:RECORD CITY:ARRAYfl..12] OF CHAR; ZIP:INTEGER; END;

30 POS,CHOICE,LBN:INTEGER;

40 BEGIN

50 LEN:= 15; RESET (DFILE,"FILE.REL,L,-",LEN);

60 RESET (ERROR); REPEAT

70 WRITE (H2=READ, 1=WRITE, 0=BND? "); READLN (CHOICE);

75 WRITELN ("POSITION? "); READLN (POS); SEEK (DFILE,POS);

80 CASE CHOICE OF

- 43 -

c

Abacus Software PASCAL-64

90 ; 1: BEGIN READLN (DATA.CITY,DATA.ZIP);

100 WRITELN (DFILE,DATA); END;

110 ; 2: BEGIN READLN (DFILE,DATA);

WRITELN (DATA.STAT,DATA.ZIP); END;

120 END; UNTIL CHOICE=0;

130 CLOSE (DFILE); END.

c

c

- 44 -

c

c

c

Abacus Software PASCAL-64

Chapter 8

8.1 SBTs

The set in Pascal is a collection of several elements

of the same basic type. A set is therefore a data structure

like arrays and records. Each element of the basic type is

either present within a set or absent from it. There is no

direct access to the individual elements of the set, as is

possible using the index of an array. It is only possible to

determine if an element is present in a set or not. If an
element is assigned to a set twice, the contents of the set
will not change. Several sets may be combined using the

mathematical operators. The data type of a set may be either

INTEGER, CHAR, or, since elements of a user-defined TYPE are

internally represented as integers, of a user-defined TYPE.

Since the actual type is only important for output, and sets

cannot be output, it is not necessary to specify the type of

set in Pascal 64. A set may therefore contain any desired

elements of type INTEGER or type CHAR. REAL values will
automatically be converted to integers. A set should only be

used for one data type so you may wish to give the data type

of set as a comment behind it to remind you. The set dec

laration is the same as for a basic data type, although the
set itself does not represent a basic data type:

VAR name:SET;

A set may be placed in a declaration wherever a basic

data type may be placed. Sets may be used as elements of

arrays and records. In standard Pascal, the range of values

which may be assigned to a set are limited by most compilers

and must be given in the declaration. The size of the range

varies from compiler to compiler but is usually between 64

and 256. Sets in Pascal 64 can contain any of the elements

of type INTEGER or CHAR. A set could contain both the values

-20000 and 20000, for example. In spite of this, the maximum
number of elements in a set is limited, although not by

their value range. If a set is assigned more than 63 ele

ments, an OVERFLOW message is given. To determine if an

element of a desired data type is in a set, you need only

determine if the array index or pointer address is contained
in it. Using this trick, it is possible to make sets of data

types other than INTEGER or CHAR. It must be noted that a

set does not represent a data block. In spite of this, sets

can be assigned to each other or passed to subroutines. If

sets are to be saved to disk, they must be saved as part of

a record so that the the record can be output.

- 45 -

c

c

c

Abacus Software PASCAL-64

8.2 Representing sets

A number can be given as a variable or as a value

directly in a program. The same applies to sets. A set is

represented directly by listing the set elements and

placing thesein square brackets:

[5,4,3,-l,X,Q+l,5 DIV 4,7,8,9,10]

or with a set of type CHAR:

[tfA",MBM,MCtt,MRtt,CHR(X),CHR(X+l),CHR(X+2)]

The elements of a set may be the results of expressions. A

set without elements is represented as an empty set:

It is obvious that set elements will frequently have

numerically successive values. A range of numbers or char

acters may be specified by the usual double period. The

order of elements in a set is entirely irrelevant. The above

examples can also be written:

[-l,3..5,7..10,X,Q+l,5 DIV 4]

["AM. .HC",wRtt,CHR(X). .CHR(X+2)]

A set specified in this manner may be manipulated

directly or assigned to a set variable. The following

assignments are possible:

SBT1:= [1,5,7,9..20]

SET2:= []

PUNCTUATION:= [",-,"?",".","!",";",":"]

8.3 Set operations

The most important set operator is the operator IN. It

determines whether or not an element is present within a

set.

Format:

expression IN set

This operator returns a result of type BOOLEAN (true or

false) and assumes a place in the algebraic hierarchy of

operators. It is placed at the same level as the comparison

operators. All other set operators have the same hierarchy

as their REAL-operator counterparts. With the help of the

operator IN, we have a simple way of replacing a CASE state

ment:

- 46 -

c

c

c

Abacus Software PASCAL-64

IF A IN ["0".."9"] THEN WRITELN ("DIGIT");

IF A IN PUNCTUATION THEN WRITELN ("PUNCTUATION");

The union of two sets contains all of the elements of both
and is itself of type set.:

[l,3]+[2,4,5] is identical to [1.5]

In order to add an element to a set, it must first be turned
into one itself:

SET1:= SET1+[NEWNUMBER];

The difference of two sets is a. set containing all of the
elements of the first set which do not appear in the second:

[l,2,5,6]-[4,5,8] yields [1,2,6]

The intersection of two sets consists of all elements common
to both:

[1,2,5,6]*[4,5,8] yields [5]

Set comparisons:

-equality of sets

SET1=SET2

is TRUE if both sets contain the same elements,

-inequality of sets

SET1OSET2

is TRUE if at least one element of one set is not contained
in the other.

-inclusion (is contained in)

SETK=SET2

is TRUE if every element of SET1 is also in SET2 (SET1 is a
subset of SET2).

-inclusion (contains)

SET1>=SET2

is TRUE if each element of SET2 is also contained in SET1
(SET1 is a superset of SET2).

- 47 -

c

c

c

Abacus Software PASCAL-64

8.4 Using sets

Sets are useful for avoiding complicated comparisons

usings IF statements. Sets can also be used in their math

ematical sense, of course. Through the ability to store

array indices or pointers, sets can be used to identify

elements of more complex data structures.

The following program searches entered text for spec

ific groups (sets) of characters. On of these groups is the

special characters which can be defined prior to entering

the text. A RETURN ends the special character definition and

the text input.

20 VAR SPECIAL:SET;

30 SPECIALC,PUNCTC,LETTERC,DIGITC:INTEGER;

40 CHARACTER:CHAR;

50 BEGIN

60 WRITELN ("PLEASE ENTER SPECIAL CHARACTERS");

65 SPECIAL:= []; SPECIALC:= 0;

70 REPEAT

80 READ (CHARACTER);

85 IF CHARACTEROCHR(13) THEN SPECIAL: = SPECIAL+fCHARACTBR] ;

90 UNTIL CHARACTER=CHR(13); WRITELN;

100 PUNCTC:= 0; LETTERC:= 0; DIGITC:= 0;

110 REPEAT READ (CHARACTER);

120 IF CHARACTER IN SPECIAL THEN SPECIALC:= SPECIALC+1;

130 IF CHARACTER IN ["0".."9"] THEN DIGITC:= DIGITC+1;

140 IF CHARACTER IN [fT.."Zw] THEN LETTERC:= LETTERC+1;

150 IF CHARACTER IN [","," . " , M;" , ":H,"?","!"]

THEN PUNCTC:= PUNCTC+1;

160 UNTIL CHARACTER=CHR(13); WRITELN;

170 WRITELN (SPECIALC,1* SPECIAL CHARACTERS");

180 WRITELN (LETTERC," LETTERS");

190 WRITELN (DIGITC," DIGITS");

200 WRITELN (PUNCTC," PUNCTUATION MARKS");

210 END.

- 48 -

c

c

c

Abacus Software PASCAL-64

Chapter 9

9.1 Dynamic data structures (linked lists)

All of the data structures we've talked about up to

this point, except for files, are static, meaning that their

size is determined before program execution and cannot be
changed while the program in running. Frequently, however,

you do not know the exact size of a data structure before

hand, or want to make the most efficient possible use of
memory by using a dynamic structure, one that allocates only
as much space as you need at any given moment. To this end,
Pascal provides pointers which we can use to make what are
called linked lists.

In a linked list, an element may be inserted or deleted
without affecting the position in memory of the other ele

ments. With an array, for instance, many of the elements
must be shifted in memory in order to insert a new one.

Although this is easy to program, as shown in Chapter 6, it
requires considerably more time to execute than does a

comparable operation performed on a linked list. Lists can

represent any data structure, not just arrays where each

element has just one predecessor or successor. In Pascal, it

is possible to determine the memory address of variables and
their relationships to each other from within the program.
This is done using pointers.

The principle behind pointers is really quite simple. A
variable or data structure is assigned a pointer variable by
declaration. In order to be able to access the data struct
ure or its elements, the address of the data structure is

first transferred to the pointer variable and then the data
structure may be indirectly accessed through the pointer

variable. To be able to build a list, the data structure

contains one or more element which give the address of the

predecessor or successor. In order to access the successor
of a data structure, the address of the successor is simply
assigned to the pointer variable and the successor can then

be accessed though the pointer. Because this structure also
has a predecessor, it is possible to access the entire
linked list using a single pointer. At least one pointer
should be defined which points to the start or end of the
list so that the list can always be searched from the
beginning or end. Because the list elements are only tied
together by pointers, their actual order in memory is

unimportant. A new element can be inserted into the list by
assigning a new memory location to the element and changing
two pointers. List elements may also possess more than one
predecessor or successor.

Declaration of dynamic data structures:

- 49 -

c

c

s~-

Abacua Software PASCAL-64

VAR list name:"data structure;

The data structure should be of type RECORD so that one
element of the structure can be be a pointer and point to
the predecessor or successor. An INTEGER variable nay take
the place of a pointer within the data structure in Pascal
64 because integer variables and pointers nay be freely
assigned to each other. In standard Pascal, this variable
would have to be declared again as a pointer. This
difference occurs only in the declaration and has no effect
on the rest of the program. The data type INTEGER can also
be declared as a POINTER in order to show that a variable
functions as a pointer.

The following example demonstrates a pointer declaration:

VAR P:"RECORD SUCCESSOR:POINTER; NUMBER:REAL; END;

It is assumed for now that the list is already constucted
and the variable P contains the address of a list element.
The access of a list element occurs as follows:

P is the variable which contains the
address of the list element.

P~ is the list element (in the case, a
data block of type RECORD with length
7 bytes)

P~.SUCCESSOR contains the address of the next list
element

P~.NUMBER is the actual contents of the list
element and can is treated as any

other REAL variable.

To access the next list element, the following assignment
suffices to advance the pointer:

P:= P".SUCCESSOR;

Now all of the described accesses apply to the next list
element.

Most lists have a beginning and an end; seldom are
lists chained circularly. It may occur that an element has
no successor or that a pointer points to a non-existing list

element, if the list has no elements. A pointer which does
not point to anything must be assigned the value NIL. NIL
means Not In List and is a constant. A pointer which cont

ains NIL points to an element with undefined contents. If
such an element is inadvertently accessed, there will be no
problem provided the program notices this in due time. Such
an element may never be assigned a value in any event.

Naturally, the program is not required to manage the

memory itself in order to generate list elements. This work
is performed by a Pascal routine:

- 50 -

Abacus Software PASCAL-64

c

NEW (pointer name);

The address of a free memory area will be given to the named

variable and the memory reserved for the corresponding list

element. Their is no opportunity to free the reserved memory

space again. Should this element be deleted because its

address was not saved anywhere, the memory space is lost. It

is therefore recommended that for large lists, a second list

be made of the list elements no longer required so that

these may be recovered if necessary. To free the space

reserved for the entire dynamic structure, one uses:

LISTINIT;

This command erases all lists and is automatically executed

at the start of the program.

If a list should no longer fit in memory, an OUT OF

MEMORY error will be given.

•c

c

9.2 Using pointers

At least two pointers are required to construct a

simple list. One is needed to point to the list element

currently being worked with, and one to always point to the

start of the list so that the list can be searched from

start to finish. A additional aid pointer will also be

declared.

VAR AID,P,START:^RECORD

NEXT:POINTER;

WORD:ARRAY[1..10] OF CHAR;

END;

Since no list elements exist at the start of the program,

START may not yet pointto a variable:

START:= NIL;

The second pointer is used when inserting an element:

NEW (P);

The new element must naturally contain a value:

READLN (P^.WORD);

The new list element should be used as the new start so that

no pointer to the end of the list is required.

Because the new element is supposed to be placed in front of

the start, it has the previous start as its successor:

^ START;

- 51 -

c

c

c

Abacus Software PASCAL-64

In addition, the new element is now the start of the list:

START:= P;

Other elements may be added in the same manner, starting

with NEW.

In order to find a certain list element, the list is

searched from the beginning:

P:= START;

If this list element is not the one desired, the next

element is taken:

P:= P'.NEXT;

This continues until either the desired list element is

found, or an element with the address NIL is encountered.

To insert an element into our sample list, the pointer

P must point to the new element and the pointer variable

named AID to the element before the one to be inserted: The

successor of the new element P~ is the previous successor of

the element AID":

P^.NEXT:= AID^.NEXT;

The new successor of the element AID~ is P^.

^ P;

To remove a list element from the list, the previous

successor of the element becomes the successor of it pred

ecessor. In the following example, AID" is the predecessor

of the element to be deleted:

P:= AID^.NEXT;

AID-\NEXT:= P^.NEXT;

This sample program illustrates inserting and searching:

10 PROGRAM BMPLOYEELIST;

21 VAR P,START:^RECORD

22 ; NEXT:POINTER;

23 ; NAME:ARRAY[1..20] OF CHAR;

24 ; NUMBER:INTEGER;

25 ; END;

30 VAR CHOICE:CHAR; SEARCHNAME:ARRAY[1..20] OF CHAR;

40 BEGIN

50 START:= NIL; REPEAT

60 WRITE (MI=INSERT, S = SEARCH, X=ENDtf); RBADLN (CHOICE);

70 CASE CHOICE OF

80 nln: BEGIN

- 52 -

Abacus Software PASCAL-64

c

90 ;

100

110

120

130 •

140

150

160

170 ;

180 ;

190 ;

200 ;

NEW (P);

i

; P^.NEXT:

; END;

*S": BEGIN

WRITELN

READLN

WRITELN ("NAME?"); READLN (P^.NAME);

WRITELN ("NUMBER?"); READLN (P".NUMBER);

= START; START:= P;

("NAME TO SEARCH FOR?");

(SEARCHNAME); P: = START;

WHILE PONIL DO

END;

210 END;

BEGIN

IF P~.NAME=SEARCHNAME THEN WRITELN

(P~.NUMBER);

P:= P^.NEXT;

END;

220 UNTIL CHOICE="X";

230 END.

9.3 Additional list structures

c

With the help of pointers it is possible to generate

other kinds of list structures. The best known structure is

the stack which allows access only to the top value. The

stack is designated as a LIFO (Last In, First Out) struct

ure. With a FIFO (First In, First Out) structure, elements

are placed in at one end of the list and taken out of the

other. The FIFO structure is known as a buffer. Lists may

also be doubly linked—each element contains pointers to its

successor and predecessor. This has the advantage that the

list can be searched in either direction. A closed list is a

list in which the successor of the last element is the first

element. The list has no beginning and no end. Such a list

can also be double-linked, of course. More complicated str

uctures have two or more successors for each element. Such a

structure is called a tree because the structure continually

divides and branches out. The ends of the branches must
naturally be denoted with NIL. Starting from the root, it is

quite simple to find an element if a consistent decision

criterium is used when forming the list. Trees with two

successors per element are called binary trees. An element

of the tree might point back to the root or list elements
may have several predecessors.

c
9.4 Combinations of data structures

By combining various data structures, it is possible to

get around some of the limitations of simpler data struct

ures. The most important combination is the array/record

combination. As mentioned before, the capabilities of sets

can be expanded by saving array indices or pointer addresses

in sets. Even an ARRAY OF SET can be used to overcome the

- 53 -

c

c

c

Abacus Software PASCAL-64

limit of 63 elements per set. Also very helpful is the

ability to assign addresses (such as the address of the

screen memory, 1024) directly to pointers, without using

NEW. This allows entire arrays to be assigned to memory

address, a kind of super POKE command. In the following

example, certain data structures are used in an unconvent

ional manner, but is a good proof of the versatility of data

structures and the possibilities they offer:

10 PROGRAM SCROLL;

20 VAR SCREEN:~ARRA[1..1000] OF CHAR;

30 I,J,X:INTEGER; C:REAL;

40 LINE:ARRAYfl..40] OF CHAR;

60 BEGIN SCREEN:= 1024;

70 WRITELN ("TEXT?"); READLN (LINE);
80 FOR I

85 FOR I

90 FOR I

1 TO 25 DO WRITELN; WRITELN (LINE);

= 0 TO 999 DO POKE 1+55296,1;

= 1 TO 1000 DO BEGIN

100 FOR J:= 7 DOWNTO 0 DO BEGIN

110 POKE 53270,J; FOR X:= 1 TO 30 DO BEGIN END;

120 END; REPEAT UNTIL PEEK(53266)<10;

130 SCREEN^fl..0]:= SCREEN^[2..1000]; END; END.

- 54 -

c

c

Abacus Software PASCAL-64

Chapter 10

10.1 Graphics statements

10.1.1 Initializing the graphics screen

Switching the screen to high-resolution graphics is

done with the GRAPHIC statement.

Format:

GRAPHIC mode;

If the mode is equal to 1, the graphic screen is

switched on but not erased. The resolution is 320 x 200

points in two colors. The background color remains the same

while the point color is the same as the cursor color.
Multi-color graphics are discussed in Chapter 12.

If the mode is equal to 0, the normal screen is
switched back on and cleared.

If the GRAPHIC statement is used anywhere in a Pascal

program, the memory from 8192 to 16384 is reserved for

graphics, and the area from 5130 to 8192 is free for machine

language programs or other purposes. These two areas can

also be used for other purposes. One possible use is for

storing multiple screen images which can be exchanged

quickly with the help of pointers.

Sprites cannot be placed in the range 4096 to 8191; the

video controller accesses the character generator in this

area although the main processor has RAM there. More about

the inner workings of the video controller chip can be found

in our book The Anatomy, of the Commodore 64 or your

Commodore User's Guide.

10.1.2 Clearing the graphics screen

Format:

SCREENCLEAR;

This statement erases the graphics screen. It should always

be used when first switching over to the graphics screen.

c

- 55 -

c

c

c

Abacus Software PASCAL-64

10.1.3 Setting a point

Format:

PLOT expressionl9expression2;

PLOT sets a point having the same color as the char

acters on the normal screen. Expressionl gives the X-coord-

inate (0-319), expression2 gives the Y-coodinate (0-199).

10.1.4 Erasing a point

UNPLOT expressionl,expression2

Erases a point and otherwise works the same as the PLOT

statement.

Example:

10 CONST PI=3.14159265; STEP=0.196349541;

20 VAR X,l:INTEGER;

30 BEGIN GRAPHIC 1; SCREENCLEAR;

40 I:= PI*-1;

50 FOR X:= 0 TO 319 DO BEGIN

60 PLOT X,100+90*SIN(I);

70 I:= I+STEP;;

80 END;

90 GRAPHIC 0; END.

You can add additonal graphics statements of your own

with the help of procedures. You needn't worry that user-

defined functions will be slower than commands in BASIC

expansions. The main reason that graphics subroutines in run

so slowly is because of the complicated calculation required

for the pixel addresses. This is done for you in Pascal with

the PLOT statement. The advantage of user-defined functions

is their adaptability to specific problems. One important

graphics statement is drawing a line. For this reason, such

a routine can be found in Chapter 12. This subroutine may

also provide you with useful information for developing a

three-dimensional DRAW statement.

10.1.5 The SPRITE statement

Format:

SPRITE number, "bit pattern*1;

The bit pattern is save at the address given as the

number. The number of bits must be a multiple of 8. When

- 56 -

c

c

Abacus Software PASCAL-64

defining a sprite, 24 bits are specified per line; the

SPRITE statement must be used 21 times; and the address must

be incremented by three for each successive command. A space

represents an erased bit, any other character sets a bit.

The SPRITE statement be used for other purposes, such as

creating a new character set.

Example:

SPRITE 960," XXXXXXXXXX w;

SPRITE 963," XXXXXXXXXXXX ";

defines the first two lines of sprite number 15.

Sprites 11 (address 704 = 64*11), 13 (832), 14 (896), 15

(960), 32 (2048), 33 (2112), 34 (2176), and 35 (2240) may be

used. When sets are also used, only sprites 11, 32, and 33

are available.

When graphics are activated, sprites 253 (16192), 254

(16256), and 255 (16320) are also available. If graphics are

turned on but then turned off again, all of the sprites

which can be stored in the graphics RAM may also be used. If

necessary, you can try using sprites which are stored in

memory which is not being used at the moment. Sprite number

8 is only disturbed by the READ statement, for instance.

c
10.2 The POKE statement

Format:

POKE expressionl,expression2;

This command writes the result of expression2 into the

memory location specfified by the result of expressionl.

This corresponds to the BASIC command of the same name. The

POKE statement can be replaced by a pointer, which opens up

even greater capabilities than changing single memory loc

ations. This was demonstrated in Chapter 9.

10.3 Executing machine language programs

Format:

SYS expression;

A machine language program starting at expression is

executed. This command is also identical to the BASIC com

mand. The memory area from $C000 to $CFFF is available for

machina language programs, provided no recursive calls are

used, or these do not require much variable storage (recur-

- 57 -

c

c

c

Abacus Software PASCAL-64

sive variables are stored starting at $A000).

Example:

SYS 64738;

resets the computer.

10.4 The high-speed mode

Pascal 64 gives you the choice of executing arithmetic
operations in either integer or floating-point format. So
long as it does not interfere with the result, the compiler
chooses the integer mode. With the operators *, /, + , and -,
this cannot always be determined and the compiler cannot
decide. For example, of one multiplies two integers, the
result may be too large for an integer to contain. The
INTEGER; statement in Pascal 64 is used for this reason.

Format:

INTEGER;

This statement has the effect that the operations *, -, and
+ are executed in integer format if and only if both operand

are integers. An operand counts as type INTEGER if it is an
integer variable, if the result of a arithemtic operation is
an integer, or if a number or constant has no decimal point
and lies in the integer range (-32768 to 32767). The result
of an integer operation is itself of type INTEGER and is
automatically converted if a REAL result is required. If an

INTEGER result is required, this has the advantage that no
conversion from REAL to INTEGER need be performed and time

is saved. This is the case for POKE or array indices, for
example.

The operators DIV and MOD are used for integer
division. The / operation is always executed as a REAL
operation. This is generally necessary for a division.

In certain circumstances an error may result from range
overflow that would not occur when using floating-point
arithemetic. The INTEGER; statement must therefore be used
with care, particularly with multiplication which can
quickly exceed the legal range from -32768 to 32767. Because
the INTEGER statement only has effect when both operands are
of type INTEGER, it may often be used without error.

Turning off the optimization mode:

Format:

REAL;

- 58 -

c

c

c

Abacus Software PASCAL-64

This command swtiches back to the standard mode. This

is important so that calculations can be made quickly inside

of a loop and large numbers may be manipulated without

danger outside of it, for example. In order to make optimum
use of the INTEGER mode, it should be turned off only when

necessary.

Both of these commands work only on the program parts

following them (not on subroutines) and are independent of
the path of execution.

Example:

10 BEGIN

20 IF 1=0 THEN INTEGER;

30 WRITELN (2*3);

40 END.

The multiplication is executed in integer format although
the program portion containing INTEGER is never executed.
(INTEGER and REAL are compiler directives, affecting the
code generated, not the way this code is executed.)

To execute the entire program in integer format, place
the INTEGER; statement after the BEGIN of the main program.

10.5 Simultaneous execution of two programs

The Commodore 64 possesses many capatilities for
interrupt control. These are provided by the video processor

and the I/O kernal routines. With Pascal 64, it is possible
for the first time to develop interrupt routines in a high-
level language. Until now, this was only possible in

machine language. When the computer receives an interrupt, a
special progra, is called which performs such operations as
reading the keyboard and flashing the cursor. This normally
occurs sixty times per second, independent of normal BASIC.

At this place we introduce the INTERRUPT statement:

INTERRUPT procedure name;

This statement directs the interrupt to a Pascal subroutine.
This subroutine may use only its own variables and may not
expect any parameters. This subroutine is called before

before the normal interrupt routine, normally sixty times
per second. The normal Pascal program is undisturbed.
Naturally, these programs are actually executed
consecutively, but because they alternate 60 times per

second, only the execution will seem somewhat slower.

A procedure intended to handle an interrupt must satisfy
certain conditions:

- 59 -

c

c

c

Abacus Software PASCAL-64

- The procedure must execute fairly quickly, within

l/60th of a second so that execution can return

to the main program before the next interrupt

occurs. If necessary, it is possible to write a

routine which can determine that its work is not

done and continue with this. The EXIT; command

can be used in these cases to leave the

subroutine prematurely. The INTEGER statement can

also be used to aleviate this problem.

- The procedure may not execute any floating-point

or other time-consuming operations such as

READLN. Data types such as CHAR, BOOLEAN, or

INTEGER do not affect the main program, nor do

calculations made using these types. One need

only ensure that integer calculations always

return an integer. Use of the INTEGER statement

is therefore necessary. Division must always be

executed with DIV.

- No restrictions apply to the normal Pascal

program running along with the interrupt routine.

These conditions appear somewhat strict, but quite a

lot can be accomplished with integer arithmetic. Array ind

ices are of type INTEGER for example, and it is possible to

use arrays and data blocks in an interrupt routine. One

limitation applies to the POKE statement. Addresses over

32767 are not allowed since these cannot be represented by

an integer and are therefore not allowed:

POKE 50000,1; is not allowed in an interrupt routine.

This is not as bad as it might seem since every integer

consists of 16 bits, as does a memory address. One need only

use the corresponding negative (two's complement) value of

number greater than 32767. To determine the address to use

in the POKE statement from the actual memory address, simply

subtract 65536 or 2*16.

POKE -15536,1; has the desired effect.

If this seems too complicated, another method may be used

which involves overflow in the INTEGER mode:

POKE 20000+30000,1; also leads to the desired result

because the addition is of type INTEGER and also yields an

integer value, though only when using the INTEGER; state

ment. This little trick works only in the high-speed mode

and should normally not be used.

The interrupt procedure is turned off with:

INTERRUPT OFF;

- 60 -

-19-

•d)axiHMoa(

'3AOW

XXX

uXXXXX

XXXXX

«XXXXX

XXX

XXX

XXX

„XXXXX

XXXXXXX

XXXXXXXXX

XXXXXXXXXXX

MXXXXXXXXXXX

xxxxxxxxxxxxx

«xxxxxxxxxxxxx

xxxxxxxxxxxxx

,.xxxxxxxxxxxxx

XXXXXXXXXXX

xxxxxxxxx

XXXXX

DOOIOXI

XdflHHaXNI

ona

=:iHOi

JO=:A
•T'692893H0d

•8I'0fr(
..'Z68
4

1

t

,'688

/988

4'888
.'088

«'LLB
.*frL8

,'148
/898

,'998
/Z98

,'698
,'998

,'898
.'098
,'4fr8
,*frfr8

,'Ifr8
.'888

.'988

,'ZS8

I+A=:A'k'LBZZl-3H0d*A'88ZZ1
•HaoaxNi

)Zasod

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

axiHds

Nioae

:-axod

Nioaa

JaAOWannaaooHd

[XNI•]'AHVA

ozi

06

08

04

09

09

617

8t

4fr

9fr

9t

8^

Zfr
It

0*

68

88

48

98

98

PZ

88

Z8

18

08

02

81

ZI

II

01

aqaeooea^oadsxq^jos^oajjaaqx^d

aijjopaujn}jaAaasi^dnjja^uxaq^'sasodand

joj

joj

aiBOaqt).jo^aapaadapatsiqoxqM

b^uasajdaj*puBmmoo^dnaaa^uiaq^jo

j:oaxdoexaubsy#fr9aaoponiaooaq^joAoo^eayaqj;

uipunojaqubojBUjasio/I3*1)jo

inoqeajow*^dnaaa^aina^sXsaq^asqq.

paenaqubopusfgajopomnoojnoXjo

joasnIinjsasfBopuBneaoo)dnjaa;aiaqj,

•auopsiEBBJ?ojdutbdaq^

aanpaoojd

asn

aaAaa^noaxa

(pasn)oasisiq^

W-lVOSYd

c

c

c

Abacus Software PASCAL-64

10.6 Run-tiie error messages

BAD SUBSCRIPT

An attempt was made to access an array variable with an

index outside the declared range. The size of this block is

not checked when assigning data blocks because this often
need not be known (array sections).

DIVISION BY ZERO

A floating-point variable was divided by zero.

ILLEGAL QUANTITY

A value lies outside of the range allowed for the command,

such as an unpermitted coordinate for PLOT or UNPLOT.

OUT OF MEMORY

The space allocates for the machine stack or recursion stack
was exceeded. This may happen as a result of deep nesting of

user-defined functions or through a very deep recursive

nesting. The message will also result if the command NEW
cannot find enough space for a list element.

OVERFLOW

A floating point calculation exceeded the legal range

(1.70141183E+38) or a set contains more than 63 elements.

Other error messages correspond to those of the BASIC int
erpreter. Syntax and other such errors are given by the
compiler.

- 62 -

c

c

c

Abacus Software PASCAL-64

Chapter 11

11.1 Symbol files for ASSEMBLER/MONITOR-64

Pascal 64 variables, particularly those of type INTEGER
or CHAR, may be used by a machine language program. In order

that the ASSEMBLER/MONITOR 64 available from Abacus Software
can recognize these variables, it must have access to a

symbol table containing the addresses and names of the
variables. The following statement is used to create a disk
file of the addresses of the Pascal variables:

SST Mname,S,WH;

Pascal 64 writes all variables known at the time the

statement is executed to the variable file. Although the

statement is executed by the compiler, local variables are

NOT saved if the command is executed in the main program. It
should be used immediately after the SYS statement so that
all of the important variables are accounted for.

The symbol file produced by the compiler is not yet
readable by the assembler because the variables are still in
the form in which Pascal 64 saved them. The program SYMBOL
is used to convert the Pascal 64 variables into a symbol
file that is readable by ASSEMBLER/MONITOR 64. After
starting the program SYMBOL, insert the diskette containing
the variable file produced by Pascal 64 and enter the name
of the file. Answer the question about printer output with Y
or N and enter the name of the file to be created. The

program displays the names of the variables and their
addresses. All names will be given without special
characters (M.lf or M~H) and only the starting address of an
array are given. If you want to place a name in the new

file, simply press RETURN. Pressing MAM will transfer all
variables to the new file and pressing HSH will cause the
program to skip all following variables. Any other keys will
cause the program to move on to the next name.

A symbol file created in this manner may be read by the

ASSEMBLER/MONITOR 64 and the variables are treated as normal

symbols. More information can be found in the
ASSEMBLER/MONITOR 64 manual.

11.2 Jump to monitor

Format:

STOP;

This program will cause the machine language command BRK to
be inserted into the Pascal program. If a monitor is present
and active when this command is executed, control passes to
it. Memory addresses can be examined and the execution of

- 63 -

c

Abacus Software PASCAL-64

the Pascal program can be supervised from within the

monitor. If the interruption is no longer needed, it can be

changed to a NOP ($EA). The Pascal program can be continued

by entering the monitor command M.G".

c

c

- 64 -

Abacus Software PASCAL-64

Chapter 12

To help you create your own subroutine library, we have

included the following graphics routines:

c 12.1 Drawing a line

The procedure DRAW must be given four parameters,

first two form the coordinate of the starting point of

line and last two give the end point of the line.

10 PROCEDURE DRAW (X1,Y1:REAL; X2,Y2:INTEGER);

20 VAR COUNTER,DX,DY:INTEGER; STEP:REAL;

30 BEGIN Xl:= TRUNC(Xl); Yl:= TRUNC(Yl);

35 DX:= X2-X1; DY:= Y2-Y1;

40 IF (X1=X2) AND (Y1=Y2) THEN PLOT XI,Yl; ELSE BEGIN

50 IF ABS(DX)>ABS(DY) THEN BEGIN

60 STEP:= DY/ABS(DX);

70 COUNTER:= DX/ABS(DX); WHILE X1OX2 DO BEGIN

80 PLOT XI,Yl; Yl:= Yl+STEP; XI:= Xl+COUNTER; END; END;

90 ELSE BEGIN

100 STEP:= DX/ABS(DY);

110 COUNTER: = DY/ABS(DY); WHILE Y1OY2 DO BEGIN

120 PLOT XI,Yl; Xl:= Xl+STEP; Yl:= Yl+COUNTER; END; END;

130 END; END;

The

the

c When inserting this subroutine into your own programs,

the line numbers must, naturally, be changed. It is better

to save the routine separately and insert it via EXTERNAL

and the linker.

c

12.2 Activating aulti-color graphics

The procedure MULTICOLOR requires four parameters (0-

15) which determine the four colors in the multi-color mode.

10 PROCEDURE MULTICOLOR (CO,Cl,C2,C3:INTEGER);

20 VAR COUNTER,C12:INTEGER;

30 BEGIN INTEGER;

40 POKE 53270,PEEK(53270) OR 16;

50 POKE 53281,CO;

60 C12:= Cl*16+C2;

70 FOR COUNTER:= 1024 TO 2023 DO POKE COUNTER,C12;

80 FOR COUNTER:= 55296 TO 56295 DO POKE COUNTER,C3;

90 REAL; END;

- 65 -

c

c

c

Abacus Software PASCAL-64

12.3 Setting a point in aulti-color aode

The multi-plot procedure requires three parameters.

These are the X-coordinate (0-159), Y-coordinate (0-199),

and color (0-3).

10 PROCEDURE MULTIPLOT (X,YM,C:INTEGER);

20 BEGIN INTEGER;

30 IF C AND 1=1 THEN PLOT XM*2+1,YM;

40 ELSE UNPLOT XM*2+1,YM;

50 IF C AND 2=2 THEN PLOT XM*2,YM;

60 ELSE UNPLOT XM*2,YM;

70 REAL; END;

- 66 -

c

c

c

Abacus Software PASCAL-64

Chapter 13

13*1 Introduction to structured prograning

Structured programming is founded on the concept of

dividing a program into parts which have only one starting

point and one ending point (BEGIN...END) which are

themselves composed of blocks. Blocks may only be placed

after each other, next to each other (using conditional

branches), or in loops. They may not overlap and no explicit

jumps (GOTO) are allowed. By representing a block as a box,
a so-called structogram can be created, a good graphic
alternative to a flow chart. The block's structure can then

be explained within the box (loops or branches) and its

blocks represented inside it. The conditions of branches can
be written above each block.

The problem to be solved must be broken into logical

parts, and these parts broken down still farther until the

individual parts can be easily coded into Pascal statements.

This method of programming is called top-down programming

because the solution starts at the top (the entire problem)

and involves progressively breaking the problem down into

simpler and simpler parts. This allows even large, complex
problems to be solved.

A small practical example of this program technique

might involve the following problem:

Print all of the prime numbers less than 1000.

This problem can be divided into two basic steps:

- Checking to see if a number is prime.

- The creation of numbers from 1 to 1000 and passing
control to the check block.

The number 1 need not be checked. The current number will be
stored in the variable N.

The rough structure of the program looks like this:

10 VAR N:INTEGER; BEGIN

20 FOR N:= 2 TO 1000 DO BEGIN

30 check to see if prime

60 print the number if prime

70 END; END.

In order to determine if a number is prime, we will

divide it into its roots.

First these numbers must be generated. The variable

COUNTER will be used for this purpose:

10 VAR N,COUNTER:INTEGER; BEGIN

- 67 -

c

c

Abacus Software PASCAL-64

20 FOR N:= 2 TO 1000 DO BEGIN COUNTER:= 1;

30 REPEAT

40 COUNTER:= COUNTER+1;

50 UNTIL COUNTER)SQRT(N) OR evenly divisible;

60 IF NOT(evenly divisible) WRITELN (N);

70 END; END;

All that remains is the test for divisibility:

10 VAR N,COUNTER:INTEGER; BEGIN

20 FOR N:= 2 TO 1000 DO BEGIN COUNTER:= 1;

30 REPEAT

40 COUNTER:= COUNTER+1;

50 UNTIL (COUNTER>SQRT(N)) OR (N MOD COUNTERS);

60 IF NOT(N MOD COUNTER=0) WRITELN (N);

70 END; END;

The number is prime if all divisions have a remainder.

The remainder calculation is done with MOD.

The program can be optimized in a number of ways. Even

numbers need not be checked, for example. This and larger

programs can be made more readable through the careful

choice of variable names and liberal use of descriptive
comments.

A refined program for calculating prime numbers can

be found in Chapter 5. It uses a different method and

requires considerably more memory.

c

- 68 -

c

c

c

Abacus Software PASCAL-64

Chapter 14

14.1 Ad overview of Pascal 64

14.1.1 Data types

REAL - Range +/-1.70141183E+38, 9 place accuracy

INTEGER - Range +/-32767, no decimal places

CHAR - All representable characters, length 1 character

BOOLEAN - TRUE or FALSE

SET - 63 INTEGER or CHAR elements per set

RECORD - Combination of desired data types

ARRAY - Array of. desired data types

PACKED ARRAY [O..end] OF BOOLEAN - packed array of boolean
values

"data type - indirect access to a data structure for
construction of lists

FILE - sequential or relative file for storage of data

Data types may be nested as desired.

14.1.2 Declarations

Declared names may be any length and may consist of

letters and digits. The first character must be a letter.

PROGRAM name;

-program header

VAR variable list:type;

-variable declaration with desired type

CONST name=value;

-constant declaration

TYPE name=(name list);

-type declaration

14.1.3 Procedure and Functions

PROCEDURE name (parameter list); variable declaration
subroutine declarations;

Definition of a procedure which is called like a command and

has its own local variables and subroutines.

FUNCTION name (parameter list):type; variable declaration
subroutine declarations;

Defines a function which is called like a built-in function.

The function type may also be an array or a string.

- 69 -

c

c

c

Abacus Software PASCAL-64

14.1.4 Structures

REPEAT block; UNTIL condition;

Repeats a block until the condition is fulfilled.

WHILE condition DO block;

Repeats a block as long as the condition is fulfilled.

FOR variables start value TO end value DO block;

Increments the variable from start value to end value and

executes the block each time.

FOR variables start value DOWNTO end value DO block;

Decrements the variable from start value to end value and
executes the block each time.

IF condition THEN block;

If the condition is fulfilled, the block is executed.

IF condition THEN blockl; ELSE block2;

If the condition is fulfilled, blockl is executed, otherwise
block2 is executed.

CASE expression OF

value list: block; ?

value list: block;

•

END;

If a value is identical to the result of the expression, the
block following it will be executed.

EXIT;

Exits a procedure.

GOTO label;

label: ...

Unconditional jump.

WITH record name DO block;

The record name is prefixed to all variables for which this
makes sense.

14.1.5 Input/output statements

READ (variable list);

The variables are read in from the keyboard.

READLN (variable list);

The variables are read from the keyboard and a RETURN is
expected.

WRITE (expression,tf text11, data block, string, ...);

- 70 -

c

c

c

Abacus Software PASCAL-64

The results of the expressions, the data blocks, and the
texts are displayed on the screen.

WRITELN (expression,"text",...);

As WRITE, plus a RETURN is added to the end of the output.

GET variable;

Gets a characters from the keyboard and places it in the

variable.

VAR name,device,secondary address,text:FILE;

A file is defined.

RESET (name,Hfilenameft); or REWRITE (name,"filename");
A file is opened.

RESET (name,"filename.L,-",variable);
A relative file is opened.

CLOSE (name);

Closes a file.

WRITE (name,list); or WRITELN (name,list);
Outputs to a file.

READ (name,list); or READLN (name,list);

Inputs from file.

SEEK (name,record number,byte);or SEEK (name,record number);
Selects a record in a relative file.

14.1.6 Other statements

GRAPHIC 1;

Turns on high-resolution graphics.

GRAPHIC 0;

Switched to normal screen.

SCREENCLEAR;

Clears the graphics screen.

PLOT expressionl,expression2;

Sets a graphics point.

UNPLOT expressionl,expression2;

Erases a graphics point.

SPRITE address,Hbit pattern";

Writes a bit pattern in the memory area.

POKE expressionl,expression2;

Expression2 is writtento the memory location specified my

- 71 -

c

c

c

Abacus Software PASCAL-64

expression]..

SYS expression;

Executes a machine language program.

INTEGER;

Turns on the high speed mode.

REAL;

Turns off the high speed mode.

INTERRUPT procedure name;

Interrupt-controlled simultaneous execution of two programs.

INTERRUPT OFF;

Turns the the expanded interrupt off.

FILLCHAR (string,character);

Fills a string with a character.

STR (number,string);

Converts a number into a string.

NEW (name);

Generates a new list element.

LISTINIT;

Erases all lists.

SST Hname,S,WM;

Creates a symbol table for ASSBMBLER/M0NIT0R-64 package with

the help of the program SYMBOL.

14.1.7 Assignments

variables expression;

The result of the expression is assigned to the variable.

data block:= data block;

A data block is assigned to another.

14.1.8 Arithmetic operations

+ addition (applies also to sets)

subtraction (applies also to sets)

* multiplication (applies also to sets)

/ division

** exponentiation

DIV integer division

MOD calculates remainder

AND logical and binary AND

- 72 -

Abacus Software PASCAL-64

c

OR

< =

> =

IN

logical and binary OR

equal to (also applies to sets and arrays)

not equal to (also applies to sets and arrays)

greater than (also applies to arrays)

less than (also applies to arrays)

less than or equal to (applies to sets and arrays)
greater than or equal to (applies to sets and arrays)
determines if number in set

All operators consisting of letters must be enclosed in
spaces.

c

14.1.9 Standard Functions

SIN sine, angle in radians

COS cosine

TAN tangent

ARCTAN arctangent

EXP exponentiation of e

LN natural logarithm

SQR square

SQRT square root

ABS absolute value

TRUNC integer portion

NOT logical and binary NOT

PEEK contents of memory location

ORD number code of character

CHR character for code

RND random number

SUCC successor

PRED predecessor

LENGTH length of a string

VAL value of a digit string

c

14.1.10 Access to data structures

array name[index list]

Returns the basic element or data block of the one or more
dimensional array. The indices may be expressions.

array name[start value..end value]

Returns a section of a field. The section may be defined by
expressions.

record name.element name

Returns an element of a record.

pointer name*

Returns the element of a list to which the pointer points.

The access methods may be combined arbitrarily.

- 73 -

Abacus Software PASCAL-64

c

14.1.11 Predeclared naies

TRUE true, equal to -1 if converted to integer

FALSE false, equal to 0 if converted to integer

NIL end of list, equal to 0 if converted to integer

ERROR error channel for disk drive with address 8,

channel address 15

14.1.12 Special characters for I/O

CHR(O) End of a string

CHR(13) End of a line and number separater

CHR(32) Space and number separater

c

c

- 74 -

c

c

c

Abacus Software PASCAL-64

BIBLIOGRAPHY

The following books may be helpful to you in learning more

about the Pascal language and programming using the Pascal

64 Package.

Bowles, Kenneth L., MICROCOMPUTER PROBLEM SOLVING USING

PASCAL, Springer-Verlag, New York, 1977.

Conway, R., Gries, D., and Zimmerman, E., A PRIMER ON

PASCAL, Winthrop Publishers, Cambridge, MA, 1976.

Grogono, Peter, PROGRAMMING IN PASCAL, Addison-Wesley, 1978.

Kieburtz, Richard, STRUCTURED PROGRMMING AND PROBLEM SOLVING

WITH PASCAL, Prencice-Hall, Englewood Cliffs, NJ, 1978.

Jensen, Kathleen and Wirth, Niklaus, PASCAL USER MANUAL AND

REPORT, Sprinter-Verlag, New York, 1974.

Wirth, Niklaus, SYSTEMATIC PROGRAMMING: AN INTRODUCTION,

Prentice-Hall, Englewood Cliffs, NJ, 1973.

Wirth, Niklaus, ALGORITHMS + DATA STRUCTURES = PROGRAMS,

Prentice-Hall, Englewood Cliffs, NJ, 1976.

Zaks, Rodney, INTRODUCTION TO PASCAL, Sybex, Berkley, CA,

1981.

- 75 -

